Основание правильной четырехугольной пирамиды - правильный четырехугольник или квадрат. Для того, чтобы найти площадь основания - надо найти длину стороны основания.
Диагональное сечение пирамиды - это треугольник, имеющий основанием диагональ квадрата, а сторонами - боковые ребра.
Пусть длина диагонали равна b, тогда длина стороны квадрата будет равна, по теореме Пифагора a = b/sqrt(2) (Нарисуйте квадрат - разделите его диагональю. Диагональ - это гипотенуза, стороны - катеты).
Площадь треугольника - сечения пирамиды, равна:
S1 = b*h/2,
где h - высота пирамиды, Т.к. пирамида правильная. Высота пирамиды делит сечение на 2 прямоугольных треугольника, так что, по теореме Пифагора:
h = sqrt(25 - b^2/4)
С другой стороны, площадь основания равна:
S2 = a^2
Приравнивая S1 = S2 и исключая h, находим:
b^2/4 = b*sqrt(25 - b^2/4)/2
или
b^2 = 2b*sqrt(25 - b^2/4)
b = 2sqrt(25 - b^2/4)
Из этого уравнения находите диагональ b, а затем стороно а и площадь квадра S2.
Вот и все! Удачи!
Поделитесь своими знаниями, ответьте на вопрос:
Боковое ребро dc пирамида dabc перпендикулярно плоскости основания пирамиды. ас=4(см), вс=9(см), ad: db=2: 3. найти длину отрезка dс
сумма длин оснований равна сумме длин боковых сторон.
a + b = 28;
a - b = 14;
a = 21; b = 7;
Можно теперь составить ДВА уравнения на высоту h и проекции боковых сторон на основание (x для 15 и y для 13), а ТРЕТЬЕ уравнение - это просто x + y = 21 - 7 = 14. (Решайте, это просто до смешного :)
x^2 + h^2 = 15^2;
y^2 + h^2 = 13^2;
x + y = 14;
Начните с того, что вычтите из первого уравнения второе, и поделите на третье, после этого систему даже первоклассник решит :))
Однако две Пифагоровы тройки (5, 12, 13) и (9, 12, 15) просто подсказывают нам результат - высота равна h = 12 (общий "катет" в обеих тройках), x = 9; y = 5; сумма 14, как и должно быть :
Площадь равна 28*12/2 = 168.