Условие не совсем корректное. В равностороннем треугольнике нет большей или меньшей стороны, на то он и равносторонний.
В сети можно найти несколько вариантов похожих задач с разными данными.
Вариант 1.
Решаем задачу о равнобедренном треугольнике АВС (АВ=ВС) с боковой стороной, равной 4, и большей стороной АС.
АС=0,75•(4+4)=6 см
Биссектриса угла против основания равнобедренного треугольника совпадает с высотой и медианой, поэтому АМ=СМ и ∆ АВМ=∆ СВМ – прямоугольные.
Искомое расстояние - высота МН треугольника АВМ.
cos BAM=AM:AB=3/4
MH=AM•sin HAM
sin(HAM)=√(1-cos*)=√(1- 9/16)=√7/4
MH=3√7/4
——
Возможно, задача все же о разностороннем треугольнике.
Вариант 2.
В разностороннем треугольнике большая сторона составляет 75% суммы двух других. Точка М, принадлежащая этой стороне, является концом биссектрисы треугольника. Найдите расстояние от точки М до меньшей стороны треугольника, если меньшая высота треугольника равна 4 см.
Здесь условие корректное - есть и большая сторона, и меньшая.
АС=0,75•(AB+BC)
По свойству биссектрисы треугольника ВМ делит противоположную углу сторону АС в отношении прилежащих сторон.
АВ:ВС=АМ:СМ
АМ=0,75 АВ
Меньшая высота - высота, проведена к большей стороне. ВК=4
Из формулы площади треугольника
ВК•AM=MH•AB
НМ=ВК•AM:AB ⇒ НМ=ВК•0,75 АВ:AB
HM=4•0,75=3 см
Поделитесь своими знаниями, ответьте на вопрос:
Окружность пересекает стороны АВ и АС треугольника ABC в точках К и Р соответственно и проходит через вершины В и С. Найдите длину отрезка КР, если АР = 36, а сторона ВС в 1, 8 раза меньше стороны АВ.
ответ: 20 (ед. длины)
Объяснение: Сделаем чертеж соответственно условию.
КР отрезает от данного треугольника четырехугольник КВСР, вписанный в окружность. Сумма противолежащих углов вписанного четырехугольника 180°.
Сумма смежных углов равна 180°.
∠ВКР+∠ВСР=180°
∠ВКР+∠АКР=180° ⇒ ∠ВСР=∠АКР
Треугольники АВС и АКР подобны по двум углам: угол А - общий, ∠АСВ=∠АКР. ⇒
АВ:АР=ВС:КР ⇒ АВ•КР=АР•ВС
Примем ВС=х. Тогда АВ=1,8х ⇒
1,8х•КР=36х
КР=36х:1,8х=20 (ед. длины)