Найти длину третьей стороны треугольника можно, воспользовавшись теоремой косинусов. Данная геометрическая теорема звучит следующим образом: квадрат одной из сторон треугольника равен значению, получаемому при вычитании удвоенного произведения длины известных сторон и косинуса угла, который расположен между ними, из суммы квадратов длины известных сторон. a^2 = b^2 + c^2 -2 ab* cosC a^2 = 6^2 + 10^2 - 2 * 6 * 10 * cos 120= 136 - 120* cos120 =136 - 98 = 38 извлекаем квадратный корень а = 6,2 см третья сторона треугольника
Людмила Анна
16.01.2023
Тр-кBKE и тр-кABC подобны по равным углам. (соответственные углы при пересечении параллельных прямых секущей). В подобных тр-ках отношение площадей равно квадрату коэффицента подобия. Отношение медиан - коэффиценту подобия. КЕ проходит через точку О пересечения медиан. Медиана ВР делится точкой О в отношении 2:1, т.е. ВО\ОР=2\1 значит ВО\ВР=2\3 - коэффицент подобия. КЕ\АС=2\3 АС=12*3\2=18см Sbke\Sabc=4\9 Sbke=4*72\9=32cm² BO\BP является отношением медиан, тк ВО медиана ВКЕ (Медиана ВР делит тр-к АВС и ВКЕ на два треугольника, которые попарно подобны с коэф-м 2\3 , из соотношения подобия следует КО=ОЕ)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите периметр равнобедренного треугольника, если его основание равно 20 см, а боковая сторона составляет 80 % от основания.
70
Объяснение:
Боковая сторона 20:80*100=25
2 боковые стороны 25*2=50
P=20+50=70