1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
Объяснение:
1) Прямая ОА пересекает окружность в двух точках, так как прямая бесконечна. Луч ОА пересекает окружность в одной точке, так как луч бесконечен в сторону точки А. Отрезок ОА не пересекает окружность, так как находится внутри нее.
2) Представим, что из точки на окружности К проведен радиус КОВ и хорда КС, равная радиусу. Проведем отрезок СО, который будет тоже являться радиусом окружности, и получим равносторонний треугольник КОС, в котором все стороны равны радиусу окружности. Все угла в равностороннем треугольнике равны 180/3=60 градусов.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
У коло, діаметр якого дорівнює корінь 12, вписано чотирикутник АВСD. Знайдіть діагональ BD, якщо кут BDA = 30 градусів.
Відповідь:
BD = √3
Пояснення:
(див. малюнок до задачі)
1) Отож, маємо справу з вписаним чотирикутником. Для початку, давай я просто наведу одну єдину формулу чи то відношення, якою (яким) ми будемо користуватися:
1) a/sinα=b/sinβ=c/sinγ=2R - розширена теорема синусів (див. мал.). Цю Теорему будемо застосовувати до трикутника ABD, де <BAD = 30°.
2) Оскільки діаметр дорівнює подвоєному радіусу, то радіус дорівнює:
3) З трикутника ABD за пропорційністю сторони і протилежних кутів до цієї сторони (тобто за формулою!), маємо, що: