У равнобедренного треугольника боковые стороны равны.
Пусть по 10 см будут боковые стороны, тогда основание должно быть равно: Р-(10+10)=50-20=30 (см).
Однако треугольник с такими сторонами: 10см,10см,30см не может существовать, поскольку одна его сторона - основание больше чем сумма двух других сторон: 30 >10+10.
Таким образом, 10 cм может быть только основание такого треугольника, значит ее боковые стороны (каждая) равны: (Р-10):2=20 (см)
ответ: две боковые стороны треугольника по 20см, основание - 10 см
Поделитесь своими знаниями, ответьте на вопрос:
Дизайнер, чтобы дополнить прекрасный рисунок в виде равнобедренного треугольника на стене заказчика, решил провести прямую. Автор рисунка, являясь большим любителем геометрии, решил провести её следующим образом: она пройдёт через вершину угла при основании и разделит исходный треугольник на два треугольника, каждый из которых также является равнобедренным дизайнеру найти углы исходного равнобедренного треугольника Я вообще в задачах не разбираюсь
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.