СергейНиколаевич
?>

1. Высота правильной четырехугольной пирамиды 6, а двугранные углы при основании равны 60°. Найдите площадь боковой поверхности пирамиды. 2. Апофема правильной треугольной пирамиды равна 2 6 и образует с плоскостью угол 45°. Найдите объем пирамиды. 3. Высота правильной четырехугольной пирамиды равна 3, ее объем равен 64. Найдите площадь боковой поверхности пирамиды.

Геометрия

Ответы

sakalrip
А)

ВС^2=AB^2+AC^2 - 2*AB*AC*cosA=11^2+8^2 - 2*11*8*cos60=121+64-2*88*1/2=97

BC=√97 см

б)

AC^2=AB^2+BC^2 - 2*AB*BC*cosB=13^2+7^2-2*13*7*cos60=169+49-2*13*7*1/2=127

АС=√127 см

2

теорема косинусов

а)

cos120= - cos60

NP^2=MN^2+MP^2 -2 MN*MP*cos120=7^2+15^2-2*7*15*(-cos60)=

=49+225-2*7*15*(-1/2)=379

NP=√379 см

б)

NP^2=

3

cos120= - cos60

а) меньшую диагональ (ВD)

лежит напротив  острого угла <60

BD^2=6^2+8^2-2*6*8*cos60=36+64-2*48*(1/2)=52

BD=√52=2√13 см

б) большую диагональ (АС)

лежит напротив тупого угла <120

AC^2=6^2+8^2-2*6*8*cos120=36+64-2*48*(-1/2)=148

AC=√148=2√37 см

4

а) его стороны равны 8 мм и 10 мм, а одна из диагоналей равна 14 мм;

14^2=8^2+10^2 -2*8*10*cos<A

196=64+100 - 160*cos<A

32= - 160*cos<A

cos<A= - 32/160 =-1/5= -0.2

б) его стороны равны 12 дм и 14 дм, а одна из диагоналей равна 20 дм.

20^2=12^2+14^2 -2*12*14*cos<B

400=144+196-336* cos<B

60 =-336* cos<B

cos<B = - 60/336 = - 5/28

5

диагональ (d)и две стороны (a) (b) образуют треугольник

значит третий угол треугольника  <A=180-20-60=100 град

дальше по теореме синусов

a/sin20=b/sin60=d/sinA=25/sin100

a=sin20*25/sin100=0.3420*25/0.9848=8.7 см

b= sin60*25/sin100=√3/2*25/0.9848=22 см

6

угол <С=180-<A-<B=180-30-40=110

по теореме синусов

AC/sin<B=BC/sin<A=AB/sin<C=2R

AC/sin40=BC/sin30=16/sin110

AC=sin40*16/sin110= 0.6428 *16/0.9397=10.94 см =11 см

BC= sin30*16/sin110=1/2*16/0.9397= 8.5 см

радиус описанной окружности

AB/sin<C=2R

R= AB/(2*sin<C)=16 / (2*sin110)=8/ sin110 = 8.5 см

7

8

углы параллелограмма А и В - односторонние

<A - напротив диагонали d1

<B=180-<A - напротив диагонали d2

cosA= - cosB=

d1^2=a^2+b^2-2ab*cosA

d2^2= a^2+b^2-2ab*cosB = a^2+b^2-2ab*(-cosA)= a^2+b^2+2ab*cosA

d1^2+d2^2 = a^2+b^2-2ab*cosA + a^2+b^2 +2ab*cosA = a^2+b^2 + a^2+b^2 = 2 *( a^2+b^2  )

ДОКАЗАНО сумма квадратов диагоналей равна сумме квадратов (ЧЕТЫРЕХ)сторон

9

10

11

12

13

Вроде это, Заранее незочто
Nikishina
1 - периметр это сумма длин всех сторон. в равностороннем треуг. все стороны одинак стало быть 24 делим на 3 = 8
2 итак, в равнобедренном треуг только две стороны равны. нужно вычислить третью, которая является в равнобедренном основанием надо 80 - 30 -30 = 20. то есть если стороны равны 30 м, то основание 20
3 здесь наоборот известно основание. для того чтобы определить что осталось на две боковые стороны нужно вычесть из 80 длину основания 40м. получилось 40. но это две стороны вместе, а нам нужна одна. поэтому 40 делим на 2 = 20 м одна сторона
4. с этим придется порисовать чуток. итак, известно что ек это медиана (такой отрезок, который соединяет угол с СЕРЕДИНОЙ противоположной стороны). есть такое правило, которое говорит нам о том что в равнобедренном треугольнике медиана является и бисскетрисой (делит угол ПОПОЛАМ) и высотой (то есть когда из угла к стороне проведен отрезок под углом 90 градусов) и в любой последовательности. суть не меняется. так вот исходя из этого правила я воспользовавшись тем что ек это биссектриса могу с уверенностью сказать, что угол кес равен 44 градусам, так как известно что полностью угол е равен 88 градусов, а биссектриса ек делит его пополам.  на всякий случай проверим. Сумма всех углов треугольника = 180 градусов. а углы при основании равнобедренного треугольника равны. проверяем 46+46+88 = 180. или по другому, если рассматривать треугольник екд, то 180 - 90-46-44 = 0. все верно

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. Высота правильной четырехугольной пирамиды 6, а двугранные углы при основании равны 60°. Найдите площадь боковой поверхности пирамиды. 2. Апофема правильной треугольной пирамиды равна 2 6 и образует с плоскостью угол 45°. Найдите объем пирамиды. 3. Высота правильной четырехугольной пирамиды равна 3, ее объем равен 64. Найдите площадь боковой поверхности пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

kapral1812
alexderru
kuziv31
Daniil1945
ckiras9
utkinslava
KseniGum9
kassel1b
Геннадьевич-Тимофеева158
okykovtun31
zaseche99
DVOct33
Marina281
proea
vasilevam