opel81
?>

B — точка касания прямой ABи окружности с центром в точ-ке 0 (рис. 4), OB = 6 см, AB = 8 см.Найдите длину отрезка АС.​

Геометрия

Ответы

kobzev-e

ответ: 4

Объяснение:

тр-к АВО,  ОВ _I_ АВ ( по теор. о касательн.)  ОС=ОВ=6,  АС=х,  АО=6+х,

ОА^2=OB^2+AB^2,  (6+x)^2=36+64,   36+12x+x^2=100,  x^2+12x-64=0,

корни -16(не подходит),  и х=4,  АС=4

sokolowskayaa

По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4

Объяснение:

julianikaleksandrova

По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

B — точка касания прямой ABи окружности с центром в точ-ке 0 (рис. 4), OB = 6 см, AB = 8 см.Найдите длину отрезка АС.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Алиференко_Елена342
Оксана170
Алексеевич949
cernovarmechta
vkorz594
textildlavas21
Viktorovna
Natacha3636672
sergey3699
zatoichi69
vorobyeva6428
ksyusatom19
tochkamail7
info9
boykoz9