Объяснение:
1)найдём второй угол треугольника
90-60=30 градусов
пусть х катет
катет лежащий простив 30 градусов в два раза меньше гепатенузы (меньший, искомый катет)
составим уравнение
2х-х=15
х=15 катет
15*2=30 гепотенуз
2)Построить прямоугольный треугольник по данному катету и прилежащему острому углу.
* * *
Пусть данный катет АС, угол - А
На произвольной прямой m отложим отрезок, равный длине катета АС.
Обозначим его концы А и С.
На сторонах заданного угла А циркулем радиуса=АС с центром в т.А сделаем насечки. Обозначим их О и М.
Соединим О и М.
Из т. А построенного на m катета проведем тем же раствором циркуля полуокружность.
Циркулем измерим ОМ и из т.С отложим полуокружность до пересечения с первой в т.К.
АС=АМ, АК=АО, отрезок СК равен отрезку ОМ, ⇒ ∆ АКС=∆ АОМ. Следовательно, угол КАС равен заданному.
Катет и прилежащий к нему угол построены.
На равном расстоянии по обе стороны от С отметим на прямой m т.1 и т.2.
Из этих точек, как из центров, начертим полуокружности так, чтобы они пересеклись по обе стороны от прямой m.
Точки пересечения соединим. Построен перпендикуляр к прямой m через т. С ( это стандартный построения перпендикуляра, и он наверняка Вам знаком).
Точку пересечения перпендикуляра с другой стороной угла А обозначим В.
Искомый треугольник АВС по катету АС и прилежащему углу А построен.
Поделитесь своими знаниями, ответьте на вопрос:
Дан правильный тетраэдр с ребром √2 см. Найдите расстояние между противоположными ребрами
1. 1,5 см
2. 18 см
3. Кола перетинаються один з одним.
4. Радіус = 3 см
5. Радіус 1= 9 см, радіус 2 = 21 см.
6. Доведення за рівністю трикутників.
7. Катети трикутника 12 см і 5 см, гіпотенуза - 13 см.
Объяснение:
1. Концентричні кола - це кола з різними радіусами, які мають спільний центр. Отже, одне коло від іншого буде на відстані 3-1,5=1,5 см.
Відповідь: ширина утвореного кільця дорівнює 1,5 см.
2. Центром кола, описаного навколо прямокутного трикутника, є середина гіпотенузи. Гіпотенуза дорівнює діаметру кола. Діаметр дорівнює 2*9=18 см.
Відповідь: гіпотенуза дорівнює 18см.
3. Якщо б кола дотикалися один до одного, то відстань між радіусами була б 2+9=11 см. Т. я. відстань між центрами кіл 10 см, то кола перетинаються на відстані 1 см.
4. Радіус кола, вписаного у прямокутний трикутник можна знайти за до формули площі:
S=1/2 * (a+b+c) * r, де r - радіус вписаного кола, a, b, c - сторони трикутника.
S=1/2 * (9+12+15) * r = 1/2 * 36*r=18*r,
тоді як площа прямокутного трикутника S=1/2 * 9 * 12=54
r=54/18=3 см
Відповідь: радіус вписаного кола дорівнює 3 см.
5. Різниця між радіусами кола складає 7-3=4 см, тоді 4 частини - 12 см, а 1 частина = 3 см. Отже, радіус 1 = 3*3=9 см, радіус 2 = 3*7=21 см.
6. У трикутника AOC та BOD сторони рівні, т. я. вони є радіусами кола. За умовою кути при вершині у них рівні. Отже, за теоремою рівності трикутників (якщо дві сторони і кут між ними одного трикутника дорівнює двом сторонам і куту між ними другого трикутника, то такі трикутники рівні) сторони AC і BD рівні.