∠ABC = 67°
Объяснение:
Дано: ΔABC - прямоугольный
∠C=90°
СО - биссектриса
CH - высота
∠OCH = 22°
Найти: бОльший угол ΔABC
Т.к. биссектриса делит угол пополам, а она проведена из прямого угла,следовательно ∠ACO=∠OCB=90°:2=45°
Угол ∠OCB состоит из углов ∠OCH и ∠HCB. Из этого мы делаем вывод,что ∠HCB=∠OCB-∠OCH = 45°-22°=23°
ΔСНВ - прямоугольный,т.к. CH - высота. Из этого ∠ABC=90°-∠HCB=90°-23°=67°
ΔСНВ - прямоугольный(по условию).Из этого ∠ВАC=90°-∠ABC=90°-67°=23°
Мы видим, что ∠ABC > ∠ВАC => в ответ пишем градусную меру угла ∠ABC
Поделитесь своими знаниями, ответьте на вопрос:
Сторона правильного трикутника 2√3. Знайдіть Радіус кола вписаного в трикутник?
1) Пусть т.Д - пересечение АС и ВР. ВД=ДО по условию, значит в треугольнике ВСО: ВС=СО. Но СО=ВО=r, значит треугольник ВСО равносторонний, значит угол ОВС=60, значит угол АВС=2*ОВС=2*60=120.
Во вписанном 4-угольнике сумма противоположных углов равна 180. Значит АРС=180-АВС=180-120=60.
Углы ВСР и ВАР = 90, как опирающиеся на диаметр.
2) Диаметр, перпендикулярный хорде, делит ее и стягиваемые ею дуги пополам. Значит дуги АВ=ВС=угол ВОС=60
дуги АР=СР=угол СОР=180-ВОС=180-60=120