Доказательство: Назовем пирамиду МАВСD. МА=МВ=МС=МD=13, высота МО=12 и перпендикулярна основанию. Отрезки ОА=ОВ=ОС-ОD=5 ( отношения сторон из Пифагоровых троек). Треугольники МОА=МОВ=МОС=МОD по гипотенузе - (боковому ребру) и катету - высоте МО пирамиды. Поэтому равные диагонали основания - прямоугольника- являются диаметрами описанной около него окружности, а высота проецируется в центр прямоугольника, т.е в точку пересечения его диагоналей. Сторона прямоугольника 8 см оказалась для решения лишней.
SH = a/(2Cosβ).
Объяснение:
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям).
Проведем отрезок SH перпендикулярно АВ (это апофема - высота боковой грани правильной пирамиды). АН=НВ, так как боковая грань - равнобедренный треугольник. Опустим высоту SO - в правильной пирамиде основание высоты - точка пересечения диагоналей квадрата. Соединим точку О с точкой Н. Отрезок ОН перпендикулярен прямой АВ по теореме о трех перпендикулярах.
Следовательно, угол наклона грани (эти углы у всех граней правильной пирамиды одинаковы) к плоскости основания, это угол SHO в прямоугольном треугольнике SOH.
Косинус этого угла - отношение прилежащего катета ОН к гипотенузе SH или Cosα = OH/SH. OH = a/2 (расстояние от точки пересечения диагоналей квадрата до стороны квадрата). Тогда апофема (SH) равна:
SH = a/(2Cosβ).
Поделитесь своими знаниями, ответьте на вопрос:
(х – 1)2 + (у – 2)2 + (2 + 4)2 = 9;
Объяснение:
2x-2+2y-4+6*2=9
2x-2+2y-4+12=9
2x+6+2y=9
2x=9-6-2y
2x=3-2y
x=3\2-y