Лусине_Ильенков134
?>

Составить и решить 2 прикладные задачи на вычисление длины окружности и площади круга.

Геометрия

Ответы

ekattatarenko

если многоугольник произвольный ( по числу сторон, к примеру), то решения у задачи нет - недостаточно условий. К примеру, возможен предельный случай "бесконечного" числа сторон, когда фигура ограничена 2 касательными и дугой окружности 240 градусов. Кстати, среди всех многоугольников, удовлетворяющих условию, такая фигура имеет минимальный периметр.

Если многоугольник правильный, то это - равносторонний треугольник, потому что дуга 4*pi в окружности радиуса 6 (то есть длинны 12*pi) соответствует центральному углу 120 градусов. Поэтому угол между сторонами 60 градусов. Высота равна 3 радиусам, то есть 18. Сторона равна 18/sin(60), а периметр, соответственно = 54/sin(60) = 36*корень(3) 

sergeev-alp5

В прикрепленном файле показан "вид сверху" на прямоугольник MNBA. Треугольник АВС наклонен (вершина С БЛИЖЕ к нам, чем плоскость прямоугольника) Размеры взяты в скобки, потому что соответствуют наклонным отрезкам. Рядом показан вид сбоку, на треугольник ВСМ.

Задачка упрощается благодаря тому, что 5,12,13 - пифагоровы числа, то есть АВС - прямоугольный тр-к, то есть проекция С1 лежит на BN (я сразу так и нарисовал). Нам надо найти угол СВМ в треугольнике СВМ, это и будет искомый двугранный угол (плоскость СВМ перпендикулярна АВ, потому что АВС - прямоугольный треугольник, а МВ - по условию, MNBA - прямоугольник).

Но СВМ - тоже прямоугольный треугольник (стороны 9, 12 и 15, опять пифагоровы числа). Поэтому, сразу ответ - 

 

arcsin(3/5)

 

Если бы С1 не попадала на сторону ВМ, и если бы СМВ тоже не был бы прямоугольным, задача усложнялась бы, но не так, чтобы очень :) - всё сводилось бы к применению теоремы косинусов в двух треугольниках с заданными сторонами.

 

 


Надо найти угол альфа между плоскостью треугольника abc и плоскостью прямоугольника abmn. ab = 5, bc

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Составить и решить 2 прикладные задачи на вычисление длины окружности и площади круга.
Ваше имя (никнейм)*
Email*
Комментарий*