nrostovtseva142
?>

Средняя линия трапеции 10 см, а ее высота равна 8 см. Найдите площадь трапеции.

Геометрия

Ответы

superniki87
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Zibuxin3

Построение сводится к проведению перпендикуляра из  точки к прямой. 

Из вершины А, как из центра,  раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим  эту точку К.

∆ КАС- равнобедренный с равными сторонами АК=АС.

Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой. 

Для этого из точек К и С, как из центра,  одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А. 

Отрезок АМ разделил КС пополам и является  искомой высотой ∆ АВС из вершины угла А. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Средняя линия трапеции 10 см, а ее высота равна 8 см. Найдите площадь трапеции.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shuttse
itartdesignprof
sde19755511
Seid-ZadeNadezhda1769
lika080489
annaar497
Наталья286
mar1030
marinadetsad
Sergei_sergei
Sergei Gaishun
muz-cd
asnika1989
lobutev
Gpack54