а)Даны стороны треугольника АВ и АС и угол между ними.
На произвольной прямой отложим отрезок, равный длине стороны АС, отметим на нём точки А и С.
Из вершины А заданного угла проведем полуокружность произвольного радиуса и сделаем насечки М и К на его сторонах. АМ=АК= радиусу проведенной окружности.
Из т.А на отложенном отрезке тем же раствором циркуля проведем полуокружность. Точку пересечения с АС обозначим К1.
От К1 циркулем проведем полуокружность радиусом, равным длине отрезка КМ, соединяющим стороны заданного угла.
Эта полуокружность пересечется с первой. Через точку пересечения проведем от т. А луч и отложим на нем отрезок, равный данной стороне АВ, отметим точку В. . Соединим В и С.
Искомый треугольник построен.
б) Биссектриса проводится так же, как проводится срединный перпендикуляр к отрезку.
Из точек, взятых на сторонах угла на равном расстоянии от его вершины А ( отмеряем циркулем) проводим полуокружности равного радиуса так, чтобы они пересеклись. Через точки их пересечения и А проводим луч. Треугольник АМ1К! - равнобедренный по построению, АЕ - перпендикулярен М1К1 и делит его пополам.
Треугольники АЕМ1 и АЕК1 равны по гипотенузе и общему катету. Поэтому их углы при А равны. АЕ - биссектриса.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
SA перпендикуляр до площини ромба , о точка перетину діагоналей. Установити вид трикутника SOD
S = 0,5 * х * (12 - х) = - 0,5*x^2 + 6x
т.е. площадь изменяется в зависимости от величины основания треугольника по квадратичному закону, графиком является парабола ветви которой направлены вниз
максимальное значение площади достигается в точке с координатой "х" соответствующей вершине параболы
для a*x^2 + b*x + c = 0 координата вершины "х" равна:
х = -b/2a
в данном случае х = -6/(2*(-0,5)) = 6
ответ: при основании треугольника =6 см площадь треугольника наибольшая