Поделитесь своими знаниями, ответьте на вопрос:
. Даны точки А(2;3), В(5;7), С(-2;0), Д(1;4а) Постройте вектора АВ И АС в координатной плоскости L, 0, 1, 2, , 3, 4Запишите формулы к каждому заданию и найдите L, 0, 1, 2, , 3, 4, 5в) Координаты векторов АВ, АС L, 0, 1, 2, , 3, 4, 5с)Координаты вектора (АВ + АС); Изобразите суммарный вектор на координатной плоскости. L, 0, 1, 2, , 3, 4d)Длину векторов АВ и АС L, 0, 1, 2, , 3, 4, 5e) Скалярное произведение векторов АВ и АС; L, 0, 1, 2, 3
1. Точка-проекция верхней точки пирамиды будет лежать на линии из тупого угла, являющейся медианой/биссектрисой/высотой треугольника-основания.
2. Точка-проекция верхней точки пирамиды равноудалена от всех верщин основания на 16. Это значит, что она лежит ВНЕ треугольника основания - т.е. сама пирамида как бы нависающая.
Если это не очевидно (а центр окружности, описанной около тупоугольного треугольника, лежит вне его) - пишите, докажем отдельно.
Теперь рассмотрим треугольник, образованный боковой стороной основания, проекцией ребра из тупого угла и проекцией ребра из острого угла. Он равнобедренный, и один из углов при основании равен 120/2 = 60 градусов - ага, значит он не просто равнобедренный, но и равносторонний! Боковая сторона основания, таким образом, равна 16.
Дальше найдём "длинную" сторону основания - 2* 16*cos (30) = 32 * /2 = 16
А опущенная на неё из тупого угла высота:
16*sin (30) =16 * 1/2 = 8
Площадь треугольника:
1/2 * a * h = 1/2 * 16 * 8 = 128
Объём пирамиды:
1/3 * 128 * 16 = 2048/3 *