yocrew13
?>

Решите задание времени до 31 числа

Геометрия

Ответы

КараханянКусков

B2. Дан ΔABC, точка M — середина стороны AB, точка N — середина стороны BC, S_{AMNC} = 60. Найти S_{ABC}.

MN || AB, MN = \frac{1}{2}AB ⇒ ∠BMN = ∠BAC ⇒ ΔBMN подобный ΔBAC.

\frac{S_{BMN}}{S_{BAC}} =k^2\\\frac{S_{BMN}}{S_{BAC}} = \frac{MN}{AC} = (\frac{1}{2} )^2 = \frac{1}{4}

S_{AMNC}=S_{ABC}-S_{AMN} = 1-\frac{1}{4} =\frac{3}{4}\cdot S_{ABC}\\S_{ABC} = \frac{4}{3} \cdot S_{AMNC}\\ \\S_{ABC} =\frac{4}{3}\cdot 60 = 4\cdot 20 = 80

ответ: S_{ABC} = 80 ед. кв.

B3. AK — биссектриса ΔABC, АВ = 4, ВК = 2, КС = 3. Найти периметр ΔABC.

Биссектриса угла делит противоположную сторону на отрезки, пропорциональные прилегающим сторонам:

\frac{BK}{AB}=\frac{CK}{AC} \\\\\\frac{2}{4} = \frac{3}{AC} = AC = \frac{3\cdot 4}{2} =6

P = AB+AC+(BK+CK)

P = 4+6+(2+3) = 15

ответ: Периметр ΔАВС равен 15.

B4. Площадь прямоугольного ΔABC равна 360 см², АС:ВС = 3:4. Из середины гипотенузы восстановлен перпендикуляр КМ. Найти площадь ΔMKC.

BK = CK = \frac{1}{2}BC

∠ABC = ∠KMC ⇒ ΔCKM и ΔCAB подобны по двум углам и пропорциональной стороне.

k = \frac{KC}{AC}=\frac{2}{3}

\frac{S_{\triangle CKM}}{S_{\triangle CAB}}=k^2 = \left(\frac{2}{3} \right)^2 = \frac{4}{9} =\\\\S_{\triangle CKM}= \frac{4\cdot S_{\triangle CAB}}{9} = \frac{4\cdot 360}{9} = 4\cdot 40 = 160

ответ: S_{MKC} = 160 см².

svetavancevich

я не араб хшэуққғцэұйңэұуң

лпшжвенвжыхұңыхұңухұңуұхңуұхкғүузұзңузүңузұңузұңузұкңхұкғұхғкхқкғқххқкхқғъғқеъқғееқғъккғқъеъқъеқхқееъөкъъөғъкөғъөғкқғхкқғхқкхқғкққхғқғхкқхкхқккқхеқғ

зщғфәғзіфцүіүкүущіуүщіщүкүщкүщкүщкүщкүщущғуіщғущғщғғщіүзеүзкңүзкүзкғзкүезғзүзкүзкүзеүзүззүүзеүкзүкүзүкзүзкүкзүкүезұзеұехұнхұхеұхннхезұеғүезүзеүзаеүзазүкзүкзғкүезүзкзүсуұхскғхұчңзсұңхұғсхұңсхұсғкхұсғкхқскғхұскғхұскғхұскғзұскғхұскұзскөұскзұскзұскзұскзсұзсұкхеұсұехұғхғқххұғұхкғхқғкхқғқхксғқкһғсұөскғұһскғқөскғұзскғұхксғкқхскқсхкқсхсөкұсқөкқсөкұсхкөкұсқсөкұскөкұсөсқкхксқхкхқсұксзкзұскқсесқеқсөқесқасқесқесұхесқксұөесөқесқхесзұксзұксұзскұзксеқхсөқесөқеөқесқехсқехсқскхқсеөқесөқесқесхөқесөұскөұксөұскөқск

llmell6
Сейчас : ) площадь полной поверхности (sполн)  равна 36. решение: sполн = 4sграни + 2sоснования. грани в прямой призме с основанием в виде ромба равны. sграни=h*a=3а, где а - сторона ромба. sоснования=2*sтреугольника. sтреугольника=(а*h)/2, так как треугольник с углом 60 град - равносторонний. далее  sоснования=2*(a*h)/2=a*h=3а=sграни;   sполн = 4sграни + 2sграни = 6sграни = 6*3*а= 18*а. теперь осталось найти а. рассмотрим равносторонний треугольник (половина основания призмы).найдём высоту: h=(2√3)/2;   теперь рассмотрим прямоугольный треугольник  (половина основания призмы) и найдём а.  cos(60град/2)=((2√3)/2)/а, отсюда  √3/2=√3/а, а=2. подставляем в формулу  sполн = 18*2 =36

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите задание времени до 31 числа
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

davidovalbert6
Elvira-Natalya
sdvigov
volodin-alexander
vedaikin
smint056950
Анна Марина1873
Aleksandrovna1153
infooem
aggeeva
Misyura_Viktoriya1683
maryshecka
Станислав Роман994
ИльяАндреевич-Мария
ravshandzon3019835681