Нехай задано рівнобічну трапецію ABCD, основи паралельні AD||BC, сторони AB=CD рівні між собою, BH⊥AD, де BH=12 см – висота трапеції, опущена на сторону AD,
AH=5 см, HD=11 см, звідси AD=AH+HD=5+11=16 см.
Розглянемо прямокутний трикутник ABH (∠AHB=90) та знайдемо за формулою Піфагора гіпотенузу AB:
AB^2=AH^2+BH^2, звідси
Оскільки трапеція ABCD – рівнобічна, то відповіні сторони рівні CD=AB=13 см.
Опустимо ще одну висоту CK на сторону AD, тоді кут прямий CK⊥AD (∠CKD=90).
Розглянемо прямокутні трикутники ABH і KCD.
У них ∠BAH=∠CKD – як кути при основі AD у рівнобічній трапеції ABCD (за властивістю), і CD=AB=13 см.
Тому, за ознакою рівності прямокутних трикутників, трикутники ABH і KCD рівні (за гіпотенузою і гострим кутом), звідси слідує AH=KD=5 см.
Тоді у рівнобічній трапеції:
HK=HD-KD=11-5=6 см, тому BC=HK=6 см.
Знайдемо периметр рівнобічної трапеції ABCD:
P=AB+BC+CD+AD=13+6+13+6=48 см.
Відповідь: 48 см – В.
Поделитесь своими знаниями, ответьте на вопрос:
Побудуйте ∆А1В1С1, симетричний ∆АВС відносно початку координат (2:-2) В(1:3) С(4:1) дуже будь ласка
ВОТ
Объяснение:
Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 2 : 3, считая от вершины угла при основании треугольника. Найдите основание треугольника, если его боковая сторона равна 15 см
Объяснение:
ΔАВС, АВ=ВС=15 см, К, Р, М-точки касания окружности сторон АВ,ВС,АС соответственно,АК/КВ=2/3. Найти АС.
Отрезок АВ , по условию , состоит из 5 частей или 15 см⇒
1 часть равна 3 см. Тогда АК=6см .
Т.к. АВ=ВС, то СР/РВ=2/3.
По свойству отрезков касательных , проведенных из одной точки :
АК=АМ=6 см, МС=СР=6 см ⇒ АС=АМ+МС=6+6=12(см
Подробнее - на -