troian07
?>

Выручайте, я слишком тупой для этих детский заданий

Геометрия

Ответы

andreykrutenko

2 фото 1 задача С=45°

2 фото 2 задача К=35 Р=35 М=110

Объяснение:

180-65-70=45

35+35=70 180-70=110

opscosmiclatte7868

Точка пересечения диагоналей квадрата является центром квадрата. Т.к. из него проведена перпендикулярная прямая, значит расстояние от т. О до вершин квадрата будет одинаковое. Следовательно, нам нужно найти одно такое расстояние, чтобы знать все.

Стороны квадрата (а) равны. Диагонали у квадрата равные (d), и точкd^2=a^2+a^2\\d=\sqrt{a^2+a^2} \\AC=\sqrt{4^2+4^2}=\sqrt{16+16}=\sqrt{32}=\sqrt{16}\sqrt{2}=4\sqrt{2} \:\: (cm)а пересечения делит их пополам.

Р-м ΔAOM:

∠O = 90°, AO — половина диагонали, OM — перпендикуляр к плоскости квадрата. АМ — наклонная.

AO = d/2

Ищем, чему равна диагональ квадрата:

d^2=a^2+a^2\\d=\sqrt{a^2+a^2} \\d=\sqrt{4^2+4^2}=\sqrt{16+16} =\sqrt{32}= 4\sqrt{2} \:\:(cm)

AO = (4√2)/2 = 2√2 см

Теперь можем найти длину отрезка AM

AM=\sqrt{AO^2+OM^2} \\AM=\sqrt{(2\sqrt{2})^2+5^2}=\sqrt{4\cdot 2+25} =\sqrt{33} \approx 5.74 \:\: (cm)

ответ: Расстояние равно √33 см, или приблизительно 5,74 см.


Через точку О пересечения диагоналей квадрата со стороной 4 см проведена прямая OM перпендикулярная
Volkovapavel
Есть простое решение, использующее свойство медиан: три медианы треугольника делят его на 6 равновеликих (одинаковой площади, но не равных) треугольников.
Данный нам треугольник АВС Пифагоров (его стороны равны 3,4 и 5 см).
Sabc=6см² и каждый из треугольников имеет площадь, равную 1см².
Тогда искомое расстояние - высота треугольника (одного из шести)  с катетом на гипотенузе AB.  h=2S/АM = 2/(2,5)=0,8 см.

Но для практики решим эту задачу через формулу медианы треугольника, свойство медиан, делящихся точкой пересечения в отношении 2:1, считая от вершины и формулу Герона для площади.
Пусть в треугольнике АВС <С=90° и стороны АС=b=3, ВС=а=4 и АВ=с=5.
Найдем медианы Ма и Мc по формуле:
Ma=(1/2)*√(2b²+2c²-a²).
Ma=(1/2)*√(2*(3²)+2*(5)²-4²)=(1/2)*√(18+50-16)=√52/2.
Mc=(1/2)*√(2*(3²)+2*(4)²-5²)=(1/2)*√(18+32-25)=5/2.
Тогда отрезки медиан:
АО=(2/3)*(√52/2)=2√13/3.
ОМ=(1/3)*(5/2)=5/6.
В треугольнике АОМ имеем (сразу приведя к общему знаменателю):
АМ=5/2 = 15/6.
АО=2√13/3=4√13/6.
ОМ=5/6.
Периметр Р=(20+4√13)/6. Полупериметр р=(10+2√13/6).
Тогда по формуле Герона  Sabc=√[p(p-a)(p-b)(p-c)] имеем:
Sаom=√[(10+2√13)*(10+2√13-15)*(10+2√13-4√13)*10+2√13-5)]/36.  Или:Sаom=√[(10+2√13)*(2√13-5)*(10-2√13)*(2√13+5)]/36.
Мы видим, что у нас под корнем произведение разности квадратов:
Sаom=√[(10²-(2√13)²)*((2√13)²-5²)/36 = √(48*27)/36=36/36 =1.
Итак, мы пришли к началу:
Искомое расстояние (высота ОН, проведенная к основанию АМ треугольника АОМ: ОН=2Sbom/АМ = 2/2,5 = 0,8.
ответ: ОН=0,8см.

P.S. Решение приведено для тех, кто не любит формулу Герона, тем более, когда в полупериметре встречаются корни. Чаще всего (если не всегда) приходим к произведению разности квадратов в подкоренном выражении.

Катеты прямоугольного треугольника = 3 и 4 см.найти расстояние от т. пересечения медиан треугольника

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выручайте, я слишком тупой для этих детский заданий
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Жуков219
Смирнов-Оськина
Прошкин_Николай368
svetlanam81
Plyushchik_Nikita
manuchar-formen2
спец Михасов
samoilovcoc
александр496
jim2k
Azarenkoff
chuev4444
irschacha
Валентина980
GridnevaVNIGNI&quot;