Примем сторону куба равной а.
Проведем сечение через В1МN. Оно пересекает плоскость, содержащую грань ABCD, в точках К - на продолжении АВ, и Е - на продолжении ВС.
∆ КВЕ - проекция ∆ КВ1Е на плоскость, содержащую основание куба.
АМ=МА1; CN=NC1 ( дано)
АМ - средняя линия ∆ КВВ1. ⇒ ВК=2а
CN- средняя линия ∆ ВСВ1 ,⇒ ВЕ=2а.
∆КВЕ - равнобедренный прямоугольный. Углы при КЕ=45°
КЕ=ВЕ:sin45°=2a√2
По свойству медианы прямоугольного треугольника медиана (высота, биссектриса) ∆ КВЕ=2a√2:2=a√2
Диагональ ВD квадрата АВСD=а√2
Медиана ∆ КВЕ совпадает с ВD.
Следовательно, плоскость MB1N проходит через вершину D куба.
* * *
Формула диагонали куба а√3. Можно доказать, что медиана ∆ КВ1Е равна а√3 и поэтому совпадает с диагональю куба В1D.
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли AC, если CD = 19 см и AOD = 120°AC = ?
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2)
итого
имеем для данного многоульника
n(n-3)/2=35
n(n-3)=70
- не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон
ответ: 10