Поделитесь своими знаниями, ответьте на вопрос:
Выберите правильный ответ. В прямоугольном треугольнике ABC серединный перпендикуляр к гипотенузе AB пересекает сторону BC в точке D. Найдите площадь треугольника DCA, если BD = 25, AC = 20. 80 160 150 75 Впишите правильный ответ. Внутри треугольника ABC взяли точку O так, что OM – серединный перпендикуляр к стороне AB, ON – серединный перпендикуляр к стороне AC. Известно, что AO = 24 см, ∠BOC = 60°. Найдите BC. ответ дайте в сантиметрах. ответ: см.Выберите правильный ответ. В остроугольном треугольнике ABC серединные перпендикуляры к сторонам BC и AC пересекаются в точке M. Известно, что MC = 14 см, ∠AMB = 30°. Найдите расстояние от точки M до стороны AB. ответ дайте в сантиметрах. 14 см 24 см 6 см 7 см
Значит обозначаем окантовка =Х
Ширина стала =2х;
Длина= стала 2х;
Площадь с окантовкой стала=558см^2
S -площадь прямоугольника; a -ширина b -длина;
S=a•b;
Уравнение
(10+2х)•(20+2х)=504
10•20+10•2х+2х•20+2х•2х-504=0
200+20х+40х+4х^2-504=0
4х^2+60х-304=0
Разделим на 2 все
2х^2+30х-152=0
D=b^2-4•a•c= 30^2- 4•2•(-152)=
900-8•(-152)=900+1216=2116
X1,2=(-b+-корень из D)/(2•a);
X1=(-30-46)/2•2=-76/4=-19не подходит;
Х2=(-30+46)/2•2=16/4=4 см
ответ: ширина окантовки 4 см