Поскольку плоскость сечения параллельна оси цилиндра, сечением будет прямоугольник с высотой H, равной высоте цилиндра, и основанием длиной L, являющемся хордой, лежащей в основании цилиндра. Также известно, что диагональ прямоугольника имеет наклон в 60 градусов к его основанию. Отсюда можно записать следующие соотношения:
Далее проведем отрезки, соединяющие концы хорды с центром основания цилиндра. Получится равнобедренный треугольник с углом в вершине 120 градусов и бедрами, равными радиусу основания цилиндра. Проведя в этом треугольнике высоту из вешины к хорде, получим два прямоугольных треугольника, одним из катетов которых является половина хорды. Поскольку угол между этими катетами и гипотенузой равен 30 градусам, можно записать следующее соотношение между длиной хорды и радиусом основания цилиндра:
Запишем теперь выражение для площади боковой поверхности цилиндра:
ответ: Площадь боковой поверхности цилиндра равна 32пи кв. см
Поделитесь своими знаниями, ответьте на вопрос:
Сторона ромба равна 6, а один из углов равен 150°. Найдите площадь этого ромба.
Объяснение:
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
Теорема: треугольники подобны, если 2 угла одного треугольника равны двум углам другого.
Но, если у треугольников равны 2 угла, то и третьи углы тоже равны. Подумайте.
ВЕРНО.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
Диагонали у четырехугольников перпендикулярны в ромбе, квадрате и дельтоиде. В некоторых случаях и в других четырехугольниках, например в трапеции. Из них прямоугольником является только квадрат.
НЕ ВЕРНО
3) У равностороннего треугольника есть центр симметрии.
Есть три оси симметрии (это его медианы, высоты, биссектрисы, что в этом случае одно и то же), но, как и у любого треугольника НЕТ ЦЕНТРА СИММЕТРИИ.
НЕ ВЕРНО.
4) Если в параллелограмме диагонали равны, то этот параллелограмм — квадрат.
Нет, этот параллелограмм может быть и прямоугольником.
НЕ ВЕРНО.