Впишем квадрат в решетку.
(Красные треугольники равны по двум катетам => синие гипотенузы равны, углы A, B, C, D прямые.)
Треугольники KCM и DCM равны по катету и гипотенузе.
По условию в треугольнике AKD медиана равна половине стороны - угол AKD прямой.
=> Точка K находится в узле решетки.
Теперь видно, что треугольники KBD и KAD имеют равные высоты и основания - и равные площади.
Медианы KO и KM делят их пополам.
Треугольники AMK и ABK также имеют равные высоты и основания - и равные площади.
Таким образом площадь KOD равна 1/5 площади ABD и 1/10 площади квадрата.
Объяснение:
Проведём высоту, он же катет, так как мы будем рассматривать прямоугольный треугольник. Образующая является гипотенузой. С радиусом гипотенуза обращает угол 30°. По свойству мы знаем, что катет лежащий против угла 30° равна половине гипотенузы. Высота(катет) лежит против угла 30°. Отсюда следует, что высота равна 8:2=4см. Найдём радиус(катет) по теореме Пифагора. Н-высота, Д-диаметр, R-радиус, Л-образующая.
R^2=Л^2-Н^2
R^2=8^2-4^2=48
R=√48=4√3
Д=R+R; Д=4√3+4√3=8√3
Площадь осевого сечения(формула):
S(сеч)=1/2*Д*Н
Подставляем:
S(сеч)=8√3*4/2=16√3.
Площадь полной поверхности(формула):
S(ппк)=π*R*Л+π*R^2
Подставляем:
S(ппк)=3,14*4√3*8+3,14*(4√3)^2=примерно 325.
Объём конуса:
V=1/3*π*R^2*H
Подставляем:
V=1/3*3,14*(4√3)^2*4=200,96 или 201.
Поделитесь своими знаниями, ответьте на вопрос:
Докажите равенство прямоугольных треугольников по катету и высоте, опущенной на гипотенузу
Дано: тр-ки АВС и А1В1С1,угол С=углу С1=90 гр, ВС=В1С1,СД и С1Д1-высоты, Сд=С1Д1.
Док-ть: тр-к АВС=тр-ку А1В1С1
Док-во:
1) тр-ки ВСД и В1С1Д1 равны по гипотенузе и катету, значит, угол В=углу В1.
2) тр-ки АВС и А1В1С1 равны по катету и прилежащему углу.