Окружность делится вершинами треугольника на 2+3+4=9 равных частей.
Каждая из них содержит дугу, равную
360:9=40 градусов, умноженную на количество частей в ней.
Углы треугольника АВС являются вписанными и равны половине центральных углов, на которые делят окружность вершины треугольника.
1-я дуга равна 40*2=80 градусов.
Угол, опирающийся на нее, равен 40 градусов.
2-я дуга равна 40*3=120 градусов
Угол, опирающийся на нее, равен 60 градусов
3-я дуга равна 40*4=160 градусов.
Угол, опирающийся на наее, равен 80 градусов.
40+60+80=180 градусов сумма углов треугольника АВС
Поделитесь своими знаниями, ответьте на вопрос:
Для наступних областей визначити чи точка (x, y) належить заштрихованій області з поясненями
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
1) (OA) ⃗+ (OC) ⃗ =2*(OF) ⃗ и (OB) ⃗+(OD) ⃗ = 2*(OF) ⃗
значит (OA) ⃗+ (OC) ⃗ = (OB) ⃗+(OD) ⃗
2) (1/4) * [ (OA) ⃗+(OB) ⃗+ (OC) ⃗+(OD) ⃗] =
(1/4) * [ (OA) ⃗+ (OC) ⃗+(OB) ⃗+(OD) ⃗] =
(1/4) * [ 2*(OF) ⃗+2*(OF) ] =
(1/4) * 4*(OF) ⃗ = (OF) ⃗ .