ЛаринаЛощаков
?>

к данным примерам нужны рисунки и решения заранее

Геометрия

Ответы

sve707ta

S = 50 ед².

Объяснение:

Пусть стороны прямоугольного параллелепипеда, образующие его измерения, равны "a", "b" и "c". Тогда площади основания и двух боковых граней равны

a·b = 48 (1), a·c = 40 (2) и b·c = 30 (3).

Выразим  сторону b из равенств (1) и (3) и приравняем полученное:

b = 48/a и b = 30/c  =>  48/a = 30/c  => c = 30a/48 = (5/8)a.

Подставим это значение в (2):

a·(5/8)a = 40  => a² = 320/5 = 64  =>  a = 8 ед.

Тогда из (1) b = 48/8 = 6 ед.  c = 30/8 = 5 ед. (из 2).

Найдем по Пифагору диагональ основания:

d = √(a²+b²) = √(64+36) = 10 ед.

Площадь диагонального сечения равна:

S = d·c = 10·5 = 50 ед².


Площадь основания прямоугольного параллелепипеда равна 48, а площади боковых граней 40 и 30. найдите
Umkatoys50
Обозначим стороны как a;b. И пусть ab тогда большая высота опускается на меньшую сторону , меньшая на большую . Тогда площадь с одной стороны равна S=3b , с другой стороны S=2a .
Вспомним что угол между высотами проведенные с тупого угла равен острому углу параллелограмма.Учитывая это обозначим угол между высотами как \alpha тогда острый угол равен \alpha следовательно тупой 180- \alpha . Из прямоугольных треугольников которые образовались после проведения высота соответственно на стороны a ;b равны  a=\frac{3}{sina}\\
b=\frac{2}{sina} тогда площадь запишится как      
S=\frac{6}{sin^2a}*sina=\frac{6}{sina} 
но и она же равна S=\frac{2a^2}{3}*sina приравняем 
\frac{6}{sina}=\frac{2a^2}{3}*sina\\
18=2a^2*sin^2a\\
a*sina=3  -3 нам не подходит потому что синус в I;II четверти положителен  
Диагональ выразим по теореме косинусов   
5^2=a^2+\frac{4a^2}{9}-2*a*\frac{2a}{3}*cos(180-a) \\
5^2=a^2+\frac{4a^2}{9}+\frac{4a^2}{3}*cosa\\
cosa=\frac{25-a^2-\frac{4a^2}{9}}{\frac{4a^2}{3}}\\

с первого равенство выразим синус через косинус затем подставим и решим уравнение перейдем в общем к такому 
\sqrt{1-\frac{9}{a^2}}=\frac{225-13a^2}{12a^2}\\
 решая это уравнение получим 

a=\frac{3\sqrt{253+48\sqrt{21}}}{5}\\
b=\frac{6\sqrt{253+48\sqrt{21}}}{15}\\
sina=\frac{3}{\frac{3\sqrt{253+48\sqrt{21}}}{5}}\\\\
S=\frac{3\sqrt{253+48\sqrt{21}}}{5}*\frac{6\sqrt{253+48\sqrt{21}}}{15}*\frac{3}{\frac{3\sqrt{253+48\sqrt{21}}}{5}}=\frac{6\sqrt{48\sqrt{21}+253}}{5}
оно примерно равна  26  

Найти площадь параллелограмма. если его наибольшая диагональ равна 5 см. а две его высоты, соответст

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

к данным примерам нужны рисунки и решения заранее
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vorobyeva6428
Теплова
ocik1632933
fafina12586
smakejkina
yfetyukov
mariya
albina6580
perfectorg
Irina_Nikolai
okykovtun31
egolopuzenko4253
assistant
okykovtun31
ntyremsk1