CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
sherifovaelina
27.06.2022
В равностороннем треугольнике высота является высотой, медианой и биссектрисой. Пусть половина стороны, к которой проведена медиана - х, тогда вся эта сторона ( и две другие - 2х. Высота отсекает прямоугольный треугольник. По т. Пифагора (2х)²=х²+(15√3)² 4х²-х²=225*3 3х²=225*3 х²=225*3/3 х²=225 х=₊⁻√225 х=₊⁻15 х=-15 не удовлетворяет условию задачи Т.к. х - половина стороны, то вся сторона равна 30. Треугольник равносторонний, значит, все стороны равны 30. Периметр - это сумма длин всех сторон Р=30+30+30 Р=90 ответ: 90
РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см