hotnuts
?>

Отрезки AC и AB-соответственно диаметр и хорда окружности с центром O, уголBAC=25 найти угол BOC ​

Геометрия

Ответы

elyashatdinova

Объяснение:

1. Средняя линия треугольника парраллельна стороне и равна его половине, 

Тогда если средние линии треугольника относятся как 2:2:4, то стороны относятся как 4:4:8 

4х+4х+8х=45 

16х=45

х = 45/16

4х = 45/16*4 = 45/4 = 11,25 

8х = 11,25*2 = 22,5

ответ: 11,25 см, 11,25 см,   22,5 см

2. Назовём медиану, проведённую из точки B, BD.

Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1

Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.

Рассмотрим ΔABC и ΔEBF

1) ∠B - общий

2) ∠BAC = ∠BEF - из решения

Отсюда следует, что эти треугольники подобны.

Коэффициент подобия будет равен отношению BD и BO

k = BD : BO = 3x : 2x = 3 : 2

Из подобия AC : EF = 3 : 2

15 : EF = 3 : 2

3EF = 30

EF = 10 см

ответ: 10 см

3. Учитывая, что согласно теореме Пифагора сумма квадратов катетов равна квадрату  гипотенузы, вычисляем длину гипотенузы АВ прямоугольного треугольника АВС:

АВ^2 = АС^2 + ВС^2

АВ - √АС^2 + ВСАС^2 = √5^2 + (5√3)^2 = √25 + 25 х 3 = √100 = 10 сантиметров.

Отношение катета АС к гипотенузе АВ является синусом угла АВС.

Синус угла АВС = АС/АВ = 5 : 10 = 1/2.

Угол АВС = 30°.

ответ: длина гипотенузы АВ равна 10 сантиметров, угол АВС = 30°.

4. Так как ВН высота треугольника АВС, то треугольники АВН и ВСН прямоугольные.

В прямоугольном треугольнике ВСН определим величину катета ВН через гипотенузу и противолежащий ВН угол.

Sinβ = ВН / ВС.

ВН = ВС * Sinβ = 7 * Sinβ см.

В прямоугольном треугольнике АВН выразим величину катета АН через катет ВН и угол ВАН.

tgα = BH /AH.

AH = BH / tgα = 7 * Sinβ / tgα см.

ответ: Длина отрезка АН равна 7 * Sinβ / tgα см.

5. Рассмотрим треугольник АКД, у которого, по условию, точка В середина отрезка АК, то есть АВ = ВК и так как ВС параллельна АД, как основания трапеции, тогда отрезок ВС является средней линией треугольника.

Длина средней линии треугольника равна половине длины параллельной ей стороны.

ВС = АД / 2 = 12/2 = 6 см.

Так как средняя линия треугольника совпадает с малым основанием трапеции, то сумма сторон трапеции будет равна 12 + 6 = 18 см.

ответ: Сумма оснований трапеции равна 18 см.

partners

9√3 ед²

Объяснение:

Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°,  КР⊥РТ;  КТ=4√3. Найти S(КМРТ).

Рассмотрим ΔКРТ - прямоугольный;  ∠РКТ=90-60=30°, значит, РТ=0,5КТ=2√3 по свойству катета, лежащего против угла 30 градусов.

Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;

∠ТРН=90-60=30°, значит, ТН=0,5РТ=√3.

Найдем РН по теореме Пифагора:

РН²=РТ²-ТН²=12-3=9;  РН=3.

Найдем МР.  ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР;  ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=2√3.

S(КМРТ)=(МР+КТ)/2 * РН = (2√3+4√3)/2 * 3=(3√3)*3=9√3 ед²

Подробнее - на -


В равнобедренной трапеции диагональ перпендикулярна боковой стороне.Найдите площадь трапеции, если б

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Отрезки AC и AB-соответственно диаметр и хорда окружности с центром O, уголBAC=25 найти угол BOC ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

yurovolga
Sergei_Olga658
gurman171
Mariya-Karaseva
bk4552018345
Kushchenko-Monashev
papushinrv4985
oyudina
Vip2002www86
picsell
Lomakina-Valerievna1779
platan3698952
Anastasiya
Larax0819
AnzhelikaSlabii1705