Уточним, что окружность не может быть внутри угла АСО, так как О - ее центр, а центр вписанной окружности лежит на биссектрисе угла, в который она вписана. Биссектриса же проходит строго посередине угла.
Будем находить угол АСD и угол АСО- его половину.
Смотрим рисунок.
С - точка вне окружности.
Из нее к окружности идут две касательные СА и СD. Расстояния от С до точек касания с окружностью равны.
Соединим точки касания с центром О. Отрезки АО и DО - перпендикуляры.
Поэтому
∠ САО+∠СDO=180º.
Сумма углов четырехугольника равна 360º.
∠АСD+∠AOD=180º.
Центральный ∠АOD опирается на дугу АD и равен 140º.
∠АСD=180º-140º=40º.
Его половина ∠АСО=40:2=20º
Поделитесь своими знаниями, ответьте на вопрос:
В конус вписана пирамида, основанием которой является прямоугольный треугольник. Боковая грань, которая содержит один из катетов основания, образует с плоскостью основания угол 60°. Найдите объем пирамиды, если образующая конуса равна 9 см и наклонена к плоскости основания под углом 45°.
Уточним, что окружность не может быть внутри угла АСО, так как О - ее центр, а центр вписанной окружности лежит на биссектрисе угла, в который она вписана. Биссектриса же проходит строго посередине угла.
Будем находить угол АСD и угол АСО- его половину.
Смотрим рисунок.
С - точка вне окружности.
Из нее к окружности идут две касательные СА и СD. Расстояния от С до точек касания с окружностью равны.
Соединим точки касания с центром О. Отрезки АО и DО - перпендикуляры.
Поэтому
∠ САО+∠СDO=180º.
Сумма углов четырехугольника равна 360º.
∠АСD+∠AOD=180º.
Центральный ∠АOD опирается на дугу АD и равен 140º.
∠АСD=180º-140º=40º.
Его половина ∠АСО=40:2=20º