Semenova
?>

Найдите высоту цилиндра, если радиус основания цилиндра равен 5 см, а площадь полной поверхности цилиндра равна 90π см^2.

Геометрия

Ответы

nsmmkrtchyan

13

Объяснение:

Площа циліндра = 2πr(r + h) , де  h - висота,  r - радіус основи

Маємо рівняння :

90 п = п  * 5  (5+ h)

5п(5+h) = 90п

25п + 5 п h = 90 п

5пh = 90п - 25п

5пh = 65п

5h = 65

h = 65/5

h = 13

kiruha0378

Точка касания с гипотенузой ВС является точка Е (СЕ=2, ВЕ=3), с катетом АС точка К, с катетом АВ точка М. Угол А прямой.

СЕ=СК=2, длины отрезков выходящих из одной вершины до точек касания к окружности равны, по этому же правилу

ВЕ=ВМ=3

Центр окружности О, r-радиус окружности. ОК=ОМ=r и ОК перепендик АС, ОМ перпендик АВ. АМОК-квадрат и АМ=АК=r

Тогда АС=r+2, АВ=r+3, ВС=2+3=5 по теореме Пифагора

ВС^2=АС^2+АВ^2

5^2=(r+2)^2+(r+3)^2

r^2+4r+4+ r^2+6r+9=25

2r^2+10r+13=25

2r^2+10r-12=0 сократим все на 2

r^2+5r-6=0

найдем дискрим. Д=25+24=49

корень из Д=7

r1=(-5+7)/2

r1=1

r2=(-5-7)/2=-6(радиус не может быть отрицательным)

Радиус вписан.окружности равен r=1см

 

dianakryukova00

Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).

Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.

Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.

Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).

Замечание. На основе теоремы 2 устанавливается теорема 3.

Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.

Из последней теоремы вытекает теорема 4.

Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите высоту цилиндра, если радиус основания цилиндра равен 5 см, а площадь полной поверхности цилиндра равна 90π см^2.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ваган Шутова332
ajuli2
alfastore4
Alenachernika9111
Иванович-Васильевна1153
Коновалова1705
Evagg3856
Николаевич-Золотая832
annanechaeva567
Александровна1973
Svetlana290419
mvv-155
APerova3464
avdushinalizza1
Nikolaevich-Svetlana388