Решите Геометрия 8 класс а) В треугольнике АВС (АС=ВС) высота СН=20, косинус угла А= 21/29. Найдите АС б) В треугольнике АВС (АС=ВС) высота СН=1, косинус угла А= 2 корня из 6/5. Найдите АС
Достроим трапецию до равнобедренного треугольника.
Центр вписанной окружности лежит на биссектрисе.
Биссектриса к основанию является высотой и медианой.
Окружность касается оснований в серединах.
BL=CL, AN=DN
Отрезки касательных из одной точки равны.
BK=BL=CL=CM =a
AK=AN=DN=DM =b
По теореме о пропорциональных отрезках KM||BC||AD
△KAP~△BAC, KP/BC=AK/AB => KP/2a =b/(a+b)
△PCM~△ACD, PM/AD=CM/CD => PM/2b =a/(a+b)
KP=PM =2ab/(a+b)
LN - высота => LN⊥KM
S(KLMN) =1/2 KM*LN *sin90 =2ab/(a+b) *LN
S(ABCD) =1/2 (AD+BC)*LN =(a+b) *LN
S(ABCD)/S(KLMN) =(a+b)^2/2ab =8/3 =>
(a^2 +b^2 +2ab)/2ab =8/3 =>
a/2b +b/2a +1 =8/3 =>
a/b +b/a =2(8/3 -1) =10/3
a/b =x
x +1/x =10/3 =>
x^2 -10/3 x +1 =0 => x = {1/3; 3}
ответ: основания относятся 1:3
olga-bardeeva
03.05.2021
1. Найдите диагональ квадрата, если его площадь равна 12.5. Формула площади квадрата через диагональ d² = 12,5*2 = 25 ⇒ d = √25 = 5 Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52. Площадь прямоугольника: 13*52 = 676 Площадь квадрата: a² = 676; a = √676 = 26 Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30. S = 40*10*sin30° = 400*1/2 = 200 Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3, Площадь меньшего равна 3. Найдите площадь большого. Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате. S₂ = 3*9 = 27 Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности. π≈3,14. Формула площади круга Формула длины окружности Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи), Центральный угол которого равен 90 Формула площади сектора с центральным углом α Площадь сектора равна 576
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решите Геометрия 8 класс а) В треугольнике АВС (АС=ВС) высота СН=20, косинус угла А= 21/29. Найдите АС б) В треугольнике АВС (АС=ВС) высота СН=1, косинус угла А= 2 корня из 6/5. Найдите АС
Достроим трапецию до равнобедренного треугольника.
Центр вписанной окружности лежит на биссектрисе.
Биссектриса к основанию является высотой и медианой.
Окружность касается оснований в серединах.
BL=CL, AN=DN
Отрезки касательных из одной точки равны.
BK=BL=CL=CM =a
AK=AN=DN=DM =b
По теореме о пропорциональных отрезках KM||BC||AD
△KAP~△BAC, KP/BC=AK/AB => KP/2a =b/(a+b)
△PCM~△ACD, PM/AD=CM/CD => PM/2b =a/(a+b)
KP=PM =2ab/(a+b)
LN - высота => LN⊥KM
S(KLMN) =1/2 KM*LN *sin90 =2ab/(a+b) *LN
S(ABCD) =1/2 (AD+BC)*LN =(a+b) *LN
S(ABCD)/S(KLMN) =(a+b)^2/2ab =8/3 =>
(a^2 +b^2 +2ab)/2ab =8/3 =>
a/2b +b/2a +1 =8/3 =>
a/b +b/a =2(8/3 -1) =10/3
a/b =x
x +1/x =10/3 =>
x^2 -10/3 x +1 =0 => x = {1/3; 3}
ответ: основания относятся 1:3