ABCD - прямоугольник S_(ABCD) =AB*AD = AB* OO₁=10AB . Определим хорду AB . ∆OAB равнобедренный (OA = OB =r) , высота OH одновременно и медиана AH =BH =AB /2 и биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * * ∠ BAO= ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° . OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см = 4 см и AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) . * * * можно было сразу AB =2* AH = 2*OH*tq60° * * * S_(ABCD) =10*4√3 = 40√3 (см ²) .
ответ : 40√3 см ² .
prettymarina2015
09.02.2023
Только половина : в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. доказательство пусть δ abc – равнобедренный с основанием ab, и cd – медиана, проведенная к основанию. в треугольниках cad и cbd углы cad и cbd равны, как углы при основании равнобедренного треугольника , стороны ac и bc равны по определению равнобедренного треугольника, стороны ad и bd равны, потому что d – середина отрезка ab . отсюда получаем, что δ acd = δ bcd . из равенства треугольников следует равенство соответствующих углов: acd = bcd, adc = bdc . из первого равенства следует, что cd – биссектриса. углы adc и bdc смежные, и в силу второго равенства они прямые, поэтому cd – высота треугольника. теорема доказана.
(ABCD) | | OO₁ ; ∠AOB =120° ; OO₁ =10 см ; OH ⊥AB ; OH =2 см .
-------
S_(ABCD) -?
ABCD - прямоугольник
S_(ABCD) =AB*AD = AB* OO₁=10AB . Определим хорду AB .
∆OAB равнобедренный (OA = OB =r) , высота OH одновременно и медиана AH =BH =AB /2 и биссектриса * * * ∠AOH =(1/2)∠AOB =60°.* * *
∠ BAO= ∠ABO = (180° - ∠AOB ) /2 =90°- (1/2)∠AOB =90° -60° = 30° .
OH =OA/2 (катет против угла 30°) ⇒ OA =2*OH =2*2 см = 4 см и
AB = 2* AH = 2* √ (OA² -OH²) =2√ (4² -2²) =4√3 (см) .
* * * можно было сразу AB =2* AH = 2*OH*tq60° * * *
S_(ABCD) =10*4√3 = 40√3 (см ²) .
ответ : 40√3 см ² .