Все стороны ромба равны т е достаточно найти одну сторону что бы найти периметр.
диагонали роиба точкой пересечения делятся пополам, пересекаясь, они образуют угол в 90. и являются бисектрисами углов ромба. а это значит, что можно, рассмотрев один из прямоугольных треугольников, найти сторону ромба:
АК=4,5/2=2,25см
угол ВАК=120/2=60
тогда угол АВК=180-(60+90)=30. Из этого следует, что гипотенуза (сторона ромба АВ) =2,25*2=4,5 см т к катет АК лежит против угла в 30 градусов.
Периметр будет равн сумме всех сторон ромба, которые у него равны: Р=18см
ОТВЕТ: в)18см
Поделитесь своими знаниями, ответьте на вопрос:
Напишите уравнение прямой проходящей через начало координат с угловым коэффициентом )R=1. Б)R=2 в)R= 1_2 г)R=-1 д
ответ: 24
Объяснение:
Смотри рисунок визуально становиться понятно что на против большее диагонали лежит больший угол то есть углы BAD=BCD=120 градусов, а так как углы ромба в сумме должны давать 360 и противоположные углы равны то углы ABC=CDA=60 градусов 360-240=120/2=60 из условия задачи мы знаем что AC=6 см. А еще у ромба есть такое свойство: Диагонали являются биссектрисами то есть углы ADO=ODC=ABO=OBC=30 градусов, а углы DAO=OAB=BCO=OCD=60 градусов соответственно. Есть такое своистово в прямоугольном треугольнике что напротив угла в 30 градусов располагается катет равный половине гипотенузы. Это свойство нам найти сторону ромба, а после зная сторону мы найдем периметр по формуле 4* на длинну стороны, кстати стороны у ромба равны вот. В нашем случае AO=1/2*AD так как AO лежит напротив угла прямоугольного треугольника AOD равного 30 градусов. Так как AD=DC=CB=AB, а углы DAC и ACD равны 60 градусов то треугольник ADC является равнобедренным. А у равнобедренных треугольников биссектриса, проведенная к основанию, является медианой и высотой. А так как угол AOD равен 90 градусов то OD есть не что иное, как высота биссектриса и медиана данного треугольника, а если она медиана то она делит AC пополам значит AO=6/2=3 значит AD=3*2=6, а периметр в итоге равен 6*4=24