Александровна1973
?>

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=156°. Найдите величину угла BOC. ответ дайте в градусах Это

Геометрия

Ответы

Wunkamnevniki13438

Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4

Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4 
площадь полной поверхности
2*12+38,4=24+38,4=62,4

Ligaevruslan
а) Постройте плоскость, проходящую через точки K, L и М - для этого надо просто соединить эти точки.

б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов ED= \sqrt{1^2+( \frac{1}{ \sqrt{3}} )^2-2*1*( \frac{1}{ \sqrt{3} } )*cos60}=
= \sqrt{1+ \frac{1}{3} -2*1* \frac{1}{ \sqrt{3} }* \frac{1}{2}} = \sqrt{ \frac{4- \sqrt{3} }{3} } =0.869472866.

Находим гипотенузы в треугольниках АКД и АКЕ.
KD= \sqrt{AK^2+AD^2} = \sqrt{1+ \frac{1}{3} } = \frac{2}{ \sqrt{3} } .
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
h _{a} = \frac{2 \sqrt{p(p-a)(p-b)(p-c)} }{a} .
АЕ         ДЕ                 АД                  p                      2p               S =
1    0.8694729    0.5773503    1.2234116    2.446823135     0.25
 haе              hде                 hад
 0.5          0.57506            0.86603 

       КЕ                ДЕ              КД              p                2p               S =
1.4142136   0.869473   1.154701   1.719194    3.43839    0.501492
       hке                hде                     hкд
0.7092           1.15356              0.86861.
Отношение высот hде и  hде  - это косинус искомого угла:
cos α = 0.57506 / 1.15356 =  0.498510913.
ответ: α = 1.048916149 радиан =  60.09846842°. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=156°. Найдите величину угла BOC. ответ дайте в градусах Это
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Михаил736
nkaminskaja
koldunovan
Valerevna Tuzova
egoryuzbashev
AleksandraRuslan504
zdanovich90764
мурувватовна викторович569
vladimirkirv
askorikova
Сергеевна-Пузанов
btatarintsev
pri02
arbat
Fateevsa9