Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
Объяснение:
zimbickij19
10.01.2022
Напишем то, что нам дано, ПРОСТЫМИ словами. Два ПОДОБНЫХ, но НЕРАВНЫХ треугольника имеют две пары РАВНЫХ сторон. Эти стороны, естественно, не соответственные, то есть в подобных треугольниках АВС и ХYZ, если сторона АС=9, то соответственная ей сторона XZ=6см, а стороне АВ=6см соответствует сторона XY. Стороне же ВС соответствует сторона YZ=9см. (Так как стороны одного треугольника ОБЯЗАТЕЛЬНО должны быть БОЛЬШЕ соответственных сторон другого - они же ПОДОБНЫЕ). Тогда коэффициент подобия треугольников будет равен АС/XZ=9/6=3/2. Найдем оставшиеся стороны из подобия треугольников: АВ/XY=3/2 или 6/XY=3/2, отсюда XY=4см ВС/YZ=3/2 или ВС/9=3/2, отсюда ВС=13,5см. ответ: стороны аервого треугольника АВ=6см, ВС=13,5см, АС=9см. Соответственные стороны другого (подобного) треугольника равны XY=4см, YZ=9см, XZ=6см.
Есть два решения этой задачи - стандартное и на сообразительность.
Начну со второго. Учитывая, что расстояние между домами равно сумме высот дома и фонаря, нужного результата мы добьемся, если рассыпем зёрна на расстоянии 6 метров от дома. Тогда катеты левого прямоугольного треугольника равны 8 и 6 метров, правого - 6 и 14-6=8 метров. То есть эти треугольники равны, а тогда у них равны гипотенузы, чего и нужно было добиться.
Первый Если расстояние от первого дома равно x, то квадрат гипотенузы левого треугольника равен 8²+x², а квадрат гипотенузы правого треугольника равен 6²+(14-x)²; а поскольку гипотенузы по условию должны быть равны, получаем уравнение
64+x²=36+196-28x+x²; 28x=168; x=6
Объяснение: