ответ: Пусть ABC — произвольный треугольник. Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC. Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD. Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Что и требовалось доказать.
Объяснение: Из теоремы следует, что у любого треугольника не меньше двух острых углов. Действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. Тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. Сумма этих углов не меньше 180°. А это невозможно, так как сумма всех углов треугольника равна 180°.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке изображен правильный треугольник, квадрат, правельный шести угольник со стороной а. найдите плошади закрашеных фигур. здеси радиусы секторов равны половине стороны многоугольника
Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5
Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52.
Площадь прямоугольника: 13*52 = 676
Площадь квадрата: a² = 676; a = √676 = 26
Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30.
S = 40*10*sin30° = 400*1/2 = 200
Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3,
Площадь меньшего равна 3. Найдите площадь большого.
Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27
Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности.
π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи),
Центральный угол которого равен 90
Формула площади сектора с центральным углом α
Площадь сектора равна 576