проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
далее все очевидно
d*cos(60) = a/2; sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (sбок*cos( это 64/3. а вся площадь поверхности будет 64.
Поделитесь своими знаниями, ответьте на вопрос:
Діагональ бічної грані прямокутного паралелепіпеда, в основі якого лежить квадрат, нахилена до площини основи під кутом а. знайдіть об'єм цього паралелепіпеда, якщо його бічне ребро дорівнює Н
у треугольников AOS, BOS, COS, DOS, одна сторона OS, также равны стороны AO=BO=CO=DO и так как OS перпендикулярна плоскости квадрата, значит OS перпендикулярна всем прямым лежащим в этой плоскости. Таким образом углы AOS, BOS, COS, DOS также равны между собой и равны 90 градусов.
Поэтому треугольники AOS, BOS, COS, DOS равны по правилу равенства двух сторон и угла между ними. А отсюда следует, что углы SAO, SBO, SCO, SDO также равны между собой. Следовательно углы, образуемые прямыми SA, SB, SC,SD с плоскостью квадрата равны между собой.
если периметр квадрата равен 32 см, то сторона квадрата равна 32/4=8 см.
если сторона квадрата равна 8 см, то его диагонали AC и BD равны √(8²+8²)=√(64+64)=8√2 см.
так как в квадрате диагонали точкой пересечения делятся на равные отрезки, то AO=(8√2)/2=4√2 см.
Так как треугольник AOS прямоугольный, то тангенс угла SA равен OS/AO = 4√2 / 4√2 = 1 см.
Если тангенс угла равен 1, то этот угол равен 45 градусов.
Следовательно углы, образуемые прямыми SA, SB, SC,SD с плоскостью квадрата равны 45 градусов.