Доказано, отметьте ответ как лучший
Объяснение:
1. <A = <C = 70° ( внутренние противолежащие углы в параллелограмме равны )
AB = CD, AD = BC, <A = <C
∆ABD = ∆BCD ( по свойству СУС, сторона угол сторона)
2. а) <CAD = <CAB, AD = AB, AC - общая сторона
∆ADC = ∆ABC (СУС)
б) BC = DC (из предыдущего доказательства)
тогда ∆CBD - равнобедренный, тогда CF - высота, биссектриса и медиана (свойство равнобедренного треугольника)
тогда <FCB = <FCD
FC - общая сторона
∆BFC = ∆DFC (СУС)
3. AB = BC (по условию)
тогда ∆ABC - равнобедренный, и BO - биссектриса
=> <ABO = <CBO
BO - общая сторона
=> ∆ABO = ∆CBO
тогда AO = CO
а угол AOE = углу COE = 90°
сторона OE - общая
тогда ∆AOE = ∆COE (сторона угол сторона)
надеюсь и заслуживаю лайк
Поделитесь своими знаниями, ответьте на вопрос:
Дано: треугольник ABC, c1с=16 B=90 градусов c1B=8
ответ: 1 - 30°.
2 - 9см
Объяснение: 1 - сумма углов треугольника равна 180°,в прямоугольном треугольнике обязательно есть угол 90°,следовательно 180°-90°-60°=30°.
2 - по теореме о соотношениях сторон и углов прямоугольного треугольника,сторона,лежащая напротив угла в 30° = половине гипотенузы.Если длина этого катета a, то длина гипотенузы 2a
Второй катет b найдём по Пифагору
a² + b² = (2a)²
a² + b² = 4a²
b² = 3a²
b = a√3 см
√3 больше 1, так что из двух катетов катет a, против угла в 30 градусов, является самым коротким.
Найдём длину короткого катета
а + 2а = 27
3а = 27
а = 9 см