Объяснение:
АВ:ВС=5:12, S(бок)=68 см². Найти площадь диагонального сечения параллелепипеда.
Решение.
АВСМА₁В₁С₁М₁-прямоугольный параллелепипед⇒все грани прямоугольники.
Т.к. боковые ребра перпендикулярны плоскости основания, то в диагональном сечении прямоугольник МВВ₁М₁.
S(МВВ₁М₁.)=ВМ*ВВ₁.
Пусть одна часть будет х, тогда АВ=5х , ВС=12х.
По условию S(бок)=Р( осн)*h, h-боковое ребро .
Значит 2*(5х+12х)*h=68 или h=2/х.
ΔАВМ-прямоугольный, по т. Пифагора ВМ²=(5х)²+(12х)² или ВМ²=169х² или ВМ=13х.
S(МВВ₁М₁.)=ВМ*ВВ₁. ⇒S(МВВ₁М₁.)=13х*(2/х)=6,5 (см²)
Поделитесь своими знаниями, ответьте на вопрос:
Найдите пары равных треугольников и докажите их равенство.
1)
Если прямые паралельные, то угол 1 равен углу между 2 и 3(для удобства назовем его 4). Угол 4 и 3, так как n и
m паралельны, вместе дают 180°. Чтобы узнать угол 3, отнмаем 4 угол от 180°:
180°-55°=125°
Угол 3=125°
2)
Углы 1, 2 и ещё один, который подпишем как 4, являются углами треугольника. Как известно, треугольник имеет 180°, так что чтобы получить угол 1, надо отнять от 180° угол 2 и 4. Но 4 неизвестный, так что сначала найдём его. Этот угол находиться над три, значит, так как c и d паралельные, вместе они равны 180°. Чтобы найти угол 4, надо отнять от 180° угол 3.
180°-84°=96°
Значит, мы добавляем угол 4 к углу 2 и отнимаем их от 180° и получаем значение угла 1:
180°-(96°+50°)=34°
Угол 1=34°