Чтобы найти координаты вектора, надо от координат точки конца вектора вычесть координаты точки начала, т.е. вектор
АВ = (5 – 5; - 3 – (- 2); 0 – (- 3)) = (0; -1; 3).
Так как вектор ВА противоположно направлен вектору АВ, то ВА = (0; 1; - 3).
Так как длина вектора АВ – это расстояние от точки А до точки В, а длина вектора ВА – от точки В до точки А, а это одно и то же расстояние, то получим:
|AB| = |BA| = √(x2 + y2 + z2) = √(02 + 12 + 32) = √(1 + 9) = √10.
ответ: АВ = (0, -1, 3); ВА = (0, 1, - 3); |AB| = √10; |BA| = √10.
Поделитесь своими знаниями, ответьте на вопрос:
Параллелограмм вписан в окружность. Сколько у него осей симметрии? СЕЙЧАС НУЖНО ДАЮ МАКСИМАЛЬНОЕ КОЛ-ВО
Вектор АС(-2;y-5;-8). Модуль вектора (его длина) |AC|=√(4+(y-5)²+64).
Вектор ВС(-6;(y-1);0). Модуль вектора (его длина) |BC|=√(36+(y-1)²+0).
Модули (длины) этих векторов равны по условию. Значит
√(4+(y-5)²+64)=√(36+(y-1)²+0).
Возведем обе части в квадрат:
4+(y-5)²+64=36+(y-1)² или
4+y²-10y+25+64=36+y²-2y+1
8y=56.
y=7.
ответ: С(0;7;0)
Проверим: |AC|=√(4+4+64)=√72, |BC|=√(36+36+0)=√72.
То есть точка С находится на равном расстоянии (равноудалена) от точек А и В.