Дано: ABCA1B1C1 - правильная треугольная призvf AB=8см AA1=6см Найти S сеч. -? Решение: 1)Построим сечение: (B1C1 - (это сторона верхнего основания), А - ( это противолежащая вершина)) Проводим B1A в (AA1B1B) Проводим АС1 в (АА1С1С) В1С1А - искомое сечение, равнобедренный треугольник, т.к B1A =АС1 2)по теореме Пифагора из треугольника AA1B1 - прямоугольного: B1A^2 = AA1^2+A1B1^2 отсюда: B1A^2= 36+64=100 B1A=10 3) по формуле: S=√p(p-a)(p-b)(p-c) S=√14*4*4*6=8√21 ответ:8√21 или можно найти высоту АН сечения, она равна 2√21 и потом находим S=a*h/2 S=8*2√21/2=8√21
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Відомо що O і O1 — центри кіл, описаних біля основ. ∣∣∣AF−→∣∣∣=3, SBB1D1D=20. Знайди ∣∣∣AO1−→−∣∣∣. Відповідь округли до сотих.
x₁/y₁ = y₁/12
x₁ = y₁²/12
y₁⁴/144 + y₁² - 64 = 0
t = y₁²
t²/144 + t - 64 = 0
t₁ = 72*(-1 - √(1 + 4*64/144)) = 72*(-1 - √(25/9)) = 24(-3 - 5) отбросим
t₂ = 72*(-1 + √(1 + 4*64/144)) = 72*(-1 + √(25/9)) = 24(-3 + 5) = 48
y₁² = 48
y₁₁ = -4√3 отбросим,
y₁₂ = 4√3 - это лучше :)
y₁ = 4√3
x₁ = √(64 - y₁²) = √(64-48) = √16 = 4
x₁ = 4
tg (∠CHN) = x₁/y₁ = 1/√3
∠CHN = arctan (1/√3) = 30°
-----------------------------------------------------------
x₂² + y₂² = 8²
x₂/y₂ = y₂/4*√3
x₂ = y₂²/4*√3
y₂⁴*3/16 + y₂² - 64 = 0
t = y₂²
t²*3/16 + t - 64 = 0
t₁ = 8/3*(-1 - √(1 + 4*64*3/16)) = 8/3*(-1 - √49) = 8/3(-1 - 7) отбросим
t₂ = 8/3*(-1 + √(1 + 4*64*3/16)) = 8/3*(-1 + √49) = 8/3(-1 + 7) = 16
y₂² = 16
y₂₁ = -4 отбросим
y₂₂ = 4 - это лучше :)
y₂ = 4
x₂ = √(64 - y₂²) = √(64-16) = √48 = 4√3
x₂ = 4√3
tg (∠CHM) = x₂/y₂ = √3
∠CHM = arctan (√3) = 60°
--------------------
∠MHN = ∠CHM + ∠CHN = 90°
и гипотенуза MN
MN² = y₁² + y₂² = 4² + (4√3)² = 16 + 48 = 64
MN = √64 = 8