В трапеции АВСD. AD⊥AB⊥BC; О - центр вписанной окружности.
ОС=6, ОD=8. Найти площадь трапеции.
_______
Вписать окружность в четырехугольник можно тогда и только тогда, когда суммы его противоположных сторон равны.
Трапеция - четырехугольник.⇒
АD+BC=AB+CD
Центр вписанной в углы ВСD и СDA окружности лежит на пересечении их биссектрис. ⇒ ∠СОD=90°
По т.Пифагора CD=√(CO²+OD²)=10
Радиус ОН, проведенный в точку касания окружности и боковой стороны - высота ∆ СОD.
h=2S/CD
ОН=СО•OD:CD=6•8:10=4,8
АВ=2r=9,6=H
AD+BC=9,6+10=19,6
S=H•(AD+BC):2=94,08 (ед. площади)
Поделитесь своими знаниями, ответьте на вопрос:
Знайдіть координати точок з асиметричними точками N (-5 -2) і M(4;0) відносно а) осі б) осі оy в) точках координат
Решение.
Треуг. АВС равнобедреннй, поскольку АВ = ВС, значит Угол ВАС = ВСА.
Угол САД = ВСА как накрест лежащие при параллельных прямых ВС и АД и секущей АС. Значит ВАС = 30 градусов, т.е АС является биссектрисой угла ВАД. Тогда угол ВАД = 30 + 30 =60 градусов.
Углы ВАД и АВС являются внутренними односторонними при параллельных прямых ВС и АД и секущей АВ. А сумма внутренних односторонних углов при двух параллельных прямых и секущей равна 180 градусов.
Угол АВС = 180 - 60 = 120 градусов.
Поскольку трапеция равнобокая, то
угол ВАД = СДА = 60 градусов
угол АВС = ВСД = 120 градусов.