Поделитесь своими знаниями, ответьте на вопрос:
1. Серединный перпендикуляр к стороне КМ треугольника КМN пересекает сторону KN в точке А. Найдите КА и АN, если АМ=4, 8см и КN =6, 1. 2. Биссектрисы АА1и ВВ1 треугольника АВС пересекаются в точке М. Найдите угол АМВ, если угол АСМ = 200. 3. В равнобедренном треугольнике АВС с основанием АС серединный перпендикуляр стороны АВ пересекает основание АС в точке Р. Найдите угол С, если АВР = 52о.
Точка M равноудалена от сторон ромба и находится на расстоянии 2 см от плоскости ромба. Найдите расстояние от точки M до стороны ромба, если его диагонали равны 16 см и 12 см.
-------
Обозначим ромб АВСД,
Расстояние от точки до прямой равно длине отрезка, проведённого перпендикулярно от точки к данной прямой. =>
отрезок МН перпендикулярен сторонам ромба. МН⊥АВ.
Расстояние от точки до плоскости - длина перпендикуляра между точкой и плоскостью. ⇒ МО перпендикулярен каждой прямой, проходящей через О в плоскости ромба.
т.М равноудалена от сторон ромба, =>
длина проекции ОН отрезка МН равна радиусу вписанной в этот ромб окружности, т.е. ОН равен половине высоты ромба.
а) Диагонали ромба пересекаются под прямы углом и делят его на равные прямоугольные треугольники с катетами, равными их половине.
По т.Пифагора АВ=√(ОН²+ОВ²)=√(36+64)=10 см
б) По ТТП МН⊥АВ => ОН⊥АВ.
ОН можно найти из площади ∆ АОВ
Ѕ(АОВ)=ОА•ОВ:2=24
ОН=24•2:2=4,8
По т.Пифагора МН=√(MO²+OH²)=√(4+23,04)=5,2 см