1)Треугольники подобны ⇒ и у другого треугольника стороныотносятся как 3х/4х/5х. Большая сторона - 5х, и она равна 15.
15=5х
х=3
тогда первая сторона 3х=9, вторая 4х=12
Периметр равен:9+12+15=36
ответ:36
2)Больший катет лежит против большего отрезка гипотенузы. По свойству катет в прямоугольном треугольнике есть среднее геометрическое между гипотенузой (16+9=25см) и его проекцией на гипотенузу (16см)
х=√(25*16)=20см
ответ:20см
3)Рисунок внизу.
В ΔABD по теореме косинусов:
cosABC=(AB²+BD²-AD²)/(2AB*BD)=(16+1-12,25)/(2*4*1)=4,75/8
В ΔABC по теореме косинусов:
AC²=AB²+BC²-2*AB*BC*cosABC=16+256-2*4*16*4,75/8=196
AC=14
ответ:14
Поделитесь своими знаниями, ответьте на вопрос:
Постройте прямоугольный треугольник по острому углу и прилежащему к нему катету. Рисунок и немного объяснение (описание к построению)
2)По теореме Пифагора найдём гипотенузу: гипотенуза=√8^2+15^2=√289=17 см. А S прямоугольного треугольника равна половине произведения его катетов, т.е. S треугольника=1/2*(8*15)=60 см^2;
3)За счёт свойства ромба(диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам) получаем прямоугольный треугольник с катетами 6 и 8, в котором надо найти гипотенузу, которая является стороной ромба:гипотенуза=√6^2+8^2=√100=10 см. Теперь найдём S и P данного ромба
S ромба равна половине произведения его диагоналей, т.е. S=1/2*(12*16)=96 см^2
А P ромба можно найти просто умножив значение стороны ромба на 4, т.к. стороны ромба равны, т.е. P ромба = 4*10=40 см.