Fedorov1283
?>

Нк - касательная, ок=r=5 найдите отрезок он решить, подробное решение! ​

Геометрия

Ответы

Olenkalebedeva4477

Если набранное решение пропадет еще раз - значит, не судьба.

Известная формула длины биссектрисы (если надо показать, как это получается, обращайтесь :)) 

L^2 = a*b - x*y;

Здесь L = 12, a = 14; b = 35; пусть с - третья сторона, тогда x и y - отрезки, на которые биссектриса делит с.

Из известного свойства биссектрисы x = c*a/(a + b); y = c*b/(a + b); поэтому

L^2 = a*b*(1 - c^2/(a + b)^2); то есть

c^2 = (a + b)^2*(1 - L^2/(a*b));

Вычисления дают с^2 = 1695,4 (это точное значение, а не приближенное, если не понятно.)

Поскольку найдены все три стороны, задача в принципе уже решена. Но вычисления по формуле Герона в данном случае слишком громоздки. Проще найти угол напротив стороны с.

По теореме косинусов (обозначено t = cos(C))

с^2 = a^2 + b^2 - 2*a*b*t;

t = (a^2 + b^2 - c^2)/(2*a*b);

Подстановка значений дает t = - 7/25; (угол С тупой) 

Отсюда sin(C) = 24/25;

Площадь S = a*b*sin(C)/2 = 14*35*(24/25)/2 = 235,2

 

Больше всего времени я потратил на поиски решения, использующего Пифагорову тройку 7,24,25, которая возникает по ходу решения. Увы -  не вышло. Может, кто-то сообразит?

sigidinv

 т.к. проэкция на горизонтальную ось равна гипотенуза на косинус угла между прямой и наклонной, то достраиваем до прямоугольного треугольника и умножаем наклонную равную 8см и на косинус 60 градусов следственно ответ 0.5*8=4.

 

P.S.

Проэкция выводится из того, что косинус - это отношение прилежащей стороны к гипотенузе,

значит если прилежащая сторона равна C(которая и является прэкцией),  гипотенуза равна B, то С/B косинус, следственно

B* С/B и будет решением  B сокращается и остаётся С то, что нам и нужно.

 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Нк - касательная, ок=r=5 найдите отрезок он решить, подробное решение! ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Andrei
dmitriy
eleniloy26
Kharkina1328
Ермакова Ирина674
Найдите разность квадратов - 5а и б
Butsan-Bagramyan
igorevich-alekseevna
aidapiltoyan43
Kozloff-ra20146795
николаевич-Елена988
ПетросовичЗаславский
zhunina71807
Daletskaya982
elenasnikitina84
info122