19.1. Прямая пересекает окружность. Как называется фигура, яв-
ляющаяся пересечением (общей частью) этой прямой и круга,
ограниченного данной окружностью?
сегмент
19.2. Сколько касательных к данной окружности можно провести
через данную точку, расположенную:
а) внутри окружности;нисколько
б) вне окружности; бесконечно много
в) на окружности? - одну
19.3. Сколько можно провести окружностей, касающихся данной
прямой в данной точке? две (по одной с разных сторон прямой)
19.4. Сколько можно провести окружностей данного радиуса, каса-
ющихся данной прямой в данной точке? две (по одной с разных сторон прямой)
19.5. Какой угол образуют касательная к окружности и радиус,
проведенный в точку касания?
90°
Объяснение:
ann-perminova2008
21.05.2023
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
19.1. Прямая пересекает окружность. Как называется фигура, яв-
ляющаяся пересечением (общей частью) этой прямой и круга,
ограниченного данной окружностью?
сегмент
19.2. Сколько касательных к данной окружности можно провести
через данную точку, расположенную:
а) внутри окружности;нисколько
б) вне окружности; бесконечно много
в) на окружности? - одну
19.3. Сколько можно провести окружностей, касающихся данной
прямой в данной точке? две (по одной с разных сторон прямой)
19.4. Сколько можно провести окружностей данного радиуса, каса-
ющихся данной прямой в данной точке? две (по одной с разных сторон прямой)
19.5. Какой угол образуют касательная к окружности и радиус,
проведенный в точку касания?
90°
Объяснение: