Уравнение прямой имеет вид: y = kx + b
1) Прямая проходит через точки (0;0) и (2;-8). Подставим координаты точек в уравнение прямой. Так как прямая проходит через начало координат, то b = 0.
-8 = k*2; k = -4; уравнение прямой y = -4x.
2) (0;6); (6;-6)
6 = k*0 + b ⇒ b = 6;
-6 = k*6 + 6; -12 = 6k; k = -2.
уравнение прямой y = -2x + 6.
3) (0;-5) (-10: 0)
-5 = k*0 + b ⇒ b = -5;
0 = k*(-10)-5; k = -0,5;
уравнение прямой y = -0,5x -5.
4) (5;-1) (-3;2)
-1 = 5k + b
2 = -3k + b
Решим систему уравнений. Вычтем из 1-го уравнения второе.
-1-2 = 5k+3k; -3 = 8k; k = -3/8;
b = -1 -5 *(-3/8) = -1 +15/8 = 7/8;
уравнение прямой y = (-3/8)x + 7/8.
Поделитесь своими знаниями, ответьте на вопрос:
Таблица по географии 7 класс Южная Европа
Согласно исходным данным (хА = 0; хС = 0;) точки А и С расположены на оси Оу, значит, сторона АС - вертикальна
Найдём координаты точки М.
хА = 0; хС = 0; хМ = (хС - хА)/2 = 0
уА = -1; уС = 3; уМ = (уС - уА)/2 = (3 + 1)/2 = 2
ВМ - является медианой и, одновременно, высотой. Следовательно
ВМ ⊥ АС, то есть отрезок ВМ горизонтален.
Тогда ордината точки В равна ординате точки М: уВ = 2.
Длина стороны треугольника равна АС = уС - уА = 3 - (-1) = 4
Высота равностороннего треугольника ВМ = АС·sin 60° = 4· 0.5√3 = 2√3
Поскольку отрезок ВМ горизонтален, и точка М лежит на оси Оу, то расстояние вершины В от точки М равно высоте треугольника, и абсцисса вершины В равна хВ = 2√3, если вершина В находится справа от оси Оу. Если вершина В лежит слева от оси Оу, то её абсцисса равна хВ = -2√3
ответ: В(2√3; 2) или В(-2√3; 2)