В треугольнике: катеты а и b, гипотенуза с, прямой угол С, R - радиус описанной окружности, r- радиус вписанной окружности. Начнём с описанной окружности. Поскольку угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r. Тогда отрезки катетов, прилегающих к вершинам острых углов, равны (а - r) и (b - r). Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r). Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r. Но ранее мы получили, что с = 2R Тогда 2R = a + b - 2r 2R + 2r = a + b R + r = 0.5(a + b) что и требовалось доказать.
Bobkov
25.09.2020
В треугольнике: катеты а и b, гипотенуза с, прямой угол С, R - радиус описанной окружности, r- радиус вписанной окружности. Начнём с описанной окружности. Поскольку угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r. Тогда отрезки катетов, прилегающих к вершинам острых углов, равны (а - r) и (b - r). Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r). Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r. Но ранее мы получили, что с = 2R Тогда 2R = a + b - 2r 2R + 2r = a + b R + r = 0.5(a + b) что и требовалось доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Высота правильной четырёхугольной пирамиды равна 2√3 см, а сторона основания равна 4 см.Вычисли двугранный угол при основании.
R - радиус описанной окружности, r- радиус вписанной окружности.
Начнём с описанной окружности. Поскольку угол С прямой, то этот угол опирается на диаметр окружности, т.е. диаметр окружности есть его гипотенуза, и. с = 2R
Теперь вписанная окружность. Опустим из её центра на катеты перпендикуляры, эти перпендикуляры равны r- радиусу вписанной окружности. Два взаимно перпендикулярных радиуса r и отрезки катетов, прилежащих к вершине прямого угла С, образуют квадрат со стороной r.
Тогда отрезки катетов, прилегающих к вершинам острых углов, равны
(а - r) и (b - r).
Третий перпендикуляр, опущенный из центра окружности на гипотенузу делит её на отрезки, равные (а - r) и (b - r).
Получается, что гипотенуза равна c = a - r + b - r = a + b - 2r.
Но ранее мы получили, что с = 2R
Тогда 2R = a + b - 2r
2R + 2r = a + b
R + r = 0.5(a + b) что и требовалось доказать.