Попробую стать лаской. Хотя обычно я злой, очень злой.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора, х^2 = 24^2 - 12^2 = 432 х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда у / 24 = 24 / (12*корень(3)) Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3) Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.
самир1078
18.11.2020
Здравствуйте. Решение 1 задачи состоит в знании второго признака подобии треугольников : " Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника " то эти треугольника подобны. В первом треугольника гипотенуза будет равна 5( по теореме Пифагора) . А во втором второй катет будет 8. Как видите все катеты одного треугольника в 2 раза меньше чем у другого треугольника и аналогичная ситуация с гипотенузой. Следовательно, треугольники подобные. Решение 2 задачи состоит в том, что при правильном рисунке, можно сразу ответить на второй вопрос, а именно отношение площадей. BC и AD являются основанием двух запрашиваемых треугольников, а их отношение равно 5/2. Так как отношение равно 5/2, мы можем посчитать и сторону ВО = 25 * 2,5 = 62,5.
Давай попробуем рассуждать логически. В маленьком треугольнике, отсекаемом от заданного высотой, нам даны катет 12 (он равен высоте большого), и гипотенуза 24 (она равна катету большого). Из этого можем найти второй катет маленького, назовём его банальной буквой х. По теореме Пифагора,
х^2 = 24^2 - 12^2 = 432
х = корень(432) = 12*корень(3).
теперь нам нужно заметить, что маленький и большой треугольники подобны по трём углам (у них обоих имеется прямой угол, и ещё один из острых углов у них общий). При этом у большого треугольника катет дан 24 см, а у маленького мы нашли в предыдущем действии 12*корень(3). Значит можем составить пропорцию.
Назовём гипотенузу большого треугольника, которую нужно найти банальной буквой у. Тогда
у / 24 = 24 / (12*корень(3))
Отсюда у = 24 * 24 / (12*корень(3)) = 48 / корень(3) = 16*корень(3)
Если угодно в цифрах, то 16 * 1,732 = примерно 27,71 см
Ну так у меня получилось. Уж не знаю обманул тебя или правду сказал.