1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 HC=BC-BH=6-2=4 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 6:2√7=BD:2√3 BD=12√3:2√7=(6√3):√7 или (6√21):7 ------------- 2) Найдем АС как в первом решении. Площадь треугольника АВС S=AC*BD:2 S=AH*BC:2 Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: AC*BD:2=AH*BC:2 (2√7)*BD:2=(2√3)*6:2 BD=(12√3):(2√7)=(6√3):√7 или (6√21):7 -- АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
mikhailkirakosyan
22.02.2020
1. S= a=основание, h-высота; S= площадь треугольника 14
2.
3.смежный угол с данным в сумме равны 180 град пусть ищем х, тогда нам известен кстати, это одно из известных тригоном тождеств
4. рисунок не проблема, высота всегда перпендик к стороне, не которую падает, поэтому если высота пересечет прямую AC за пределами треугольника, главное, чтобы прямой угол( прямоуг. треугольники как крайний случай, у них катеты и есть высоты, у тупых треугольников все высоты с острых углов лежат за пределами треугольника, у остврых в середине треугольника, ну а в прямоуголю тр-ках высоты с острых углов есть катеты
5. OC c ОХ 60, ОС=6 дм, координаты радиус-вектора и есть координаты нашей точки С( рад-вектор с начала координат, потомучто О); проэкция на ОХ-х: на ОУ-у, (ч,у)- координаты, которые ищем
наша точка имеет координаты () (3 дм; 3дм)
6.Расстояние между точками, это модуль вектора у которого данные точки есть начало и конец АВ(-7-5;0-(-5))=(-12;5) далее по теореме Пифагора
ответ расстояние r=13
7.сумма углов тр-ка равна 180 градусов если один угол прямой- то и треугольник прямоугольный если один угол тупой- то и тр-к тупой если же все три угла острые, то обычный острый треугольник 43 и 48 острые углы трети угол 180-43-48=180-80=11=89 острый( значит и треугольник весь острый из себя)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите абсолютные величины векторов АО И BD И решение и дано и найти
HC=BC-BH=6-2=4
По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7
Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH
6:2√7=BD:2√3
BD=12√3:2√7=(6√3):√7 или (6√21):7
-------------
2) Найдем АС как в первом решении.
Площадь треугольника АВС
S=AC*BD:2
S=AH*BC:2
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения:
AC*BD:2=AH*BC:2
(2√7)*BD:2=(2√3)*6:2
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2