dirzhanov683
?>

Высота правильной треугольной пирамиды равна 6. Двугранный угол при стороне основания равен 60 градусам. Найдите площадь поверхности пирамиды.

Геометрия

Ответы

Viktorovich

Вот, не за что. Я старался


Высота правильной треугольной пирамиды равна 6. Двугранный угол при стороне основания равен 60 граду
Solovetzmila

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
paninsv
Отметим, что наименьший угол прямоугольной трапеции, это единственный острый угол. (на нашем рисунке это <D).
SinD=EP/HD => EP=DH*SinD.
SinD=GP/HC => GP=HC*SinD.
PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH).
Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD.
Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG.
Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4.
Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4.
Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD).
Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон").
В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD.
Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2.
По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD).
Отсюда 1/SinD==2 и SinD=1/2.
ответ: острый угол D трапеции равен 30°.

Впрямоугольную трапецию вписана окружность. точки касания этой окружности со сторонами трапеции явля

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Высота правильной треугольной пирамиды равна 6. Двугранный угол при стороне основания равен 60 градусам. Найдите площадь поверхности пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nataliyaof
lenalevmax7937
viktoritut
Александра Викторович531
Елена Надыч524
Марина
asvavdeeva
spz03
tnkul
vak1984
cherry-sweet871435
MaratФам
Юрий197
Corneewan
treneva359