Tsibrova
?>

Найдите высоту равнобедренного треугольника, если угол при основании равен 60°, а боковая сторона равна 14 см.​

Геометрия

Ответы

Sergei Gaishun

В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.

S(осн.)=S_{ABC}=\dfrac{AB^2\sqrt3}{4} =\dfrac{36\sqrt3}{4} =9√3 см².

Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.

HM=\dfrac{AB\sqrt3}{6} =\dfrac{6\sqrt3}{6} =√3 см

В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.

DM=\sqrt{12^2+\sqrt3 ^2} =\sqrt{144+3} =√147 см

Боковые грани правильной пирамиды это равные треугольники.

S(бок.)=3\cdot S_{ADC} =3\cdot DM\cdot AC\cdot \dfrac12 =\dfrac32 \cdot 6\cdot \sqrt{147} =9√147 см²

S(полн.) = S(осн.)+S(бок.) = 9√3 + 9√147 см²

ответ: 9√3 + 9√147 см².


Вправильной треугольной пирамиде сторона основания равна 6 см, а высота пирамиды равна 12см. вычисли
Chistov9721209
Назовем наши прямые a и b (прямая а лежит выше прямой b), а секущую c. Соответственные углы назовем 1 и 2 (угол 1 образован пересечение прямых a и c, угол 2 образован пересечением прямых b и c),также возьмем во время доказательства угол 3, вертикальный углу 1.
Доказательство.
Углы 1 и 3 равны как вертикальные. А так как углы 1 и 2 равны по условию, то углы 2 и 3 равны между собой. Но углы 2 и 3 - внутренние накрест лежащие при прямых a и b и секущей c. А мы знаем, что если внутренние накрест лежащие углы равны, то прямые параллельны, что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите высоту равнобедренного треугольника, если угол при основании равен 60°, а боковая сторона равна 14 см.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vik1223
kit036
Viktorovna1012
Баранов955
baeva-larisa8165
LesnovaVeronika1830
Elenabolt77
Elvira-Natalya
iuv61
Inforealto
Varvara
Lapushkina
Sergei248
mon84
Джулия