16√3 см²
Объяснение:
Дано: ΔАВС - равнобедренный, ВС=АВ=8 см.
∠А/∠В=1/4.
Найти S(АВС).
Пусть ∠А=∠С=х° т.к. у равнобедренного треугольника углы при основании равны
Тогда ∠В=4х°.
Проведем высоту ВН, которая является и биссектрисой ∠В по свойству высоты равнобедренного треугольника.
Тогда ∠АВН=1/2 ∠В=2х°
Рассмотрим ΔАВН - прямоугольный, ∠А+∠АВН=90° по свойству острых углов прямоугольного треугольника. Составим уравнение:
х+2х=90; 3х=90; х=30. ∠А=30°, тогда ВН=1/2 АВ = 8:2=4 см по свойству катета, лежащего против угла 30 градусов.
По теореме Пифагора АН=(√АВ²-ВН²)=√(64-16)=√48=4√3 см.
АС=2 АН=4√3 * 2 = 8√3 см
S(АВС)=1/2 * АС * ВН = 1/2 * 8√3 * 4 = 16√3 см²
Поделитесь своими знаниями, ответьте на вопрос:
В Δ АВС ∟А= , АВ=6 см , . Найдите периметр и площадь треугольника.
60°.
Объяснение:
Пусть данный ромб АВСD.
По свойствам ромба углы, прилежащие к одной стороне, в сумме дают 180°, тогда величина угла АВС равна
180° - 60° = 120°.
По свойствам диагоналей ромба они являются биссектрисами его углов, тогда градусная мера угла АВD равна половине градусной меры угла АВС,
120° : 2 = 60°.
Второй решения:
По условию треугольник DAB является равнобедренным. Угол при вершине треугольника по условию равен 60°, тогда сумма двух равных углов при основании равна
180° - 60° = 120°.
Каждый из них будет равен
120° : 2 = 60°.
Получили, что каждый из углов АВD и АDB равен 60°.